Anomaly Detection Using Deep Learning Respecting the Resources on Board a CubeSat

被引:1
|
作者
Horne, Ross [1 ]
Mauw, Sjouke [1 ]
Mizera, Andrzej [2 ]
Stemper, Andre [3 ]
Thoemel, Jan [4 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, Dept Comp Sci, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] IDEAS NCBR, Chmielna 69, PL-00801 Warsaw, Poland
[3] Univ Luxembourg, Fac Sci Technol & Med, 2 Ave Univ, L-4365 Esch Sur Alzette, Luxembourg
[4] Univ Luxembourg, L-1359 Luxembourg City, Luxembourg
来源
JOURNAL OF AEROSPACE INFORMATION SYSTEMS | 2023年
关键词
Satellites; Artificial Neural Network; Telemetry; Algorithms and Data Structures; Anomaly Detection; CubeSat; Data-Driven System Monitoring; Spacecraft Health Monitoring; Complex Data Analysis; Deep Learning;
D O I
10.2514/1.I011232
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We explore the feasibility of onboard anomaly detection using artificial neural networks for CubeSat systems and related spacecraft where computing resources are limited. We gather data for training and evaluation using a CubeSat in a laboratory for a scenario where a malfunctioning component affects temperature fluctuations across the control system. This data, published in an open repository, guide the selection of suitable features, neural network architecture, and metrics comprising our anomaly detection algorithm. The precision and recall of the algorithm demonstrate improvements as compared to out-of-limit methods, whereas our open-source implementation for a typical microcontroller exhibits small memory overhead, and hence may coexist with existing control software without introducing new hardware. These features make our solution feasible to deploy on board a CubeSat, and thus on other, more advanced types of satellites.
引用
收藏
页码:859 / 872
页数:14
相关论文
共 50 条
  • [31] Anomaly detection using deep learning approach for IoT smart city applications
    S. Shibu
    S. Kirubakaran
    Krishna Priya Remamany
    Suhail Ahamed
    L. Chitra
    Pravin R. Kshirsagar
    Vineet Tirth
    Multimedia Tools and Applications, 2025, 84 (17) : 17929 - 17949
  • [32] Proposal for Hair Cuticle Anomaly Detection Using Metallographic Microscope and Deep Learning
    Asano, Hiroyuki
    Kuramoto, Aika
    Yotsumoto, Kensuke
    Kawanobe, Hiroko
    Nakashima, Megumi
    Hasegawa, Makoto
    2024 11TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN, ICCE-TAIWAN 2024, 2024, : 427 - 428
  • [33] Multivariate anomaly detection based on prediction intervals constructed using deep learning
    Mathonsi, Thabang
    van Zyl, Terence L.
    NEURAL COMPUTING & APPLICATIONS, 2022, 37 (2) : 707 - 721
  • [34] A Novel Approach of Traffic Congestion and Anomaly Detection with Prediction Using Deep Learning
    Ben Slimane, Jihane
    Ben Ammar, Mohamed
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 2150 - 2159
  • [35] Deep Learning-based Anomaly Detection for Compressors Using Audio Data
    Mobtahej, Pooyan
    Zhang, Xulong
    Hamidi, Maryam
    Zhang, Jing
    67TH ANNUAL RELIABILITY & MAINTAINABILITY SYMPOSIUM (RAMS 2021), 2021,
  • [36] dLSTM: a new approach for anomaly detection using deep learning with delayed prediction
    Shigeru Maya
    Ken Ueno
    Takeichiro Nishikawa
    International Journal of Data Science and Analytics, 2019, 8 : 137 - 164
  • [37] dLSTM: a new approach for anomaly detection using deep learning with delayed prediction
    Maya, Shigeru
    Ueno, Ken
    Nishikawa, Takeichiro
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 8 (02) : 137 - 164
  • [38] Anomaly Detection in Satellite Power System using Deep Learning
    Preetha, S. B. Kavya
    Sai, Jalakam Venu Madhava
    Raj, V. Sowbaranic
    Sekhar, M. Jayan
    Lavanya, R.
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [39] IoT Botnet Anomaly Detection Using Unsupervised Deep Learning
    Apostol, Ioana
    Preda, Marius
    Nila, Constantin
    Bica, Ion
    ELECTRONICS, 2021, 10 (16)
  • [40] An efficient system for anomaly detection using deep learning classifier
    Revathi, A. R.
    Kumar, Dhananjay
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (02) : 291 - 299