Anomaly Detection Using Deep Learning Respecting the Resources on Board a CubeSat

被引:1
|
作者
Horne, Ross [1 ]
Mauw, Sjouke [1 ]
Mizera, Andrzej [2 ]
Stemper, Andre [3 ]
Thoemel, Jan [4 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, Dept Comp Sci, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] IDEAS NCBR, Chmielna 69, PL-00801 Warsaw, Poland
[3] Univ Luxembourg, Fac Sci Technol & Med, 2 Ave Univ, L-4365 Esch Sur Alzette, Luxembourg
[4] Univ Luxembourg, L-1359 Luxembourg City, Luxembourg
来源
JOURNAL OF AEROSPACE INFORMATION SYSTEMS | 2023年
关键词
Satellites; Artificial Neural Network; Telemetry; Algorithms and Data Structures; Anomaly Detection; CubeSat; Data-Driven System Monitoring; Spacecraft Health Monitoring; Complex Data Analysis; Deep Learning;
D O I
10.2514/1.I011232
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We explore the feasibility of onboard anomaly detection using artificial neural networks for CubeSat systems and related spacecraft where computing resources are limited. We gather data for training and evaluation using a CubeSat in a laboratory for a scenario where a malfunctioning component affects temperature fluctuations across the control system. This data, published in an open repository, guide the selection of suitable features, neural network architecture, and metrics comprising our anomaly detection algorithm. The precision and recall of the algorithm demonstrate improvements as compared to out-of-limit methods, whereas our open-source implementation for a typical microcontroller exhibits small memory overhead, and hence may coexist with existing control software without introducing new hardware. These features make our solution feasible to deploy on board a CubeSat, and thus on other, more advanced types of satellites.
引用
收藏
页码:859 / 872
页数:14
相关论文
共 50 条
  • [21] Smart Grid Anomaly Detection using a Deep Learning Digital Twin
    Danilczyk, William
    Sun, Yan
    He, Haibo
    2020 52ND NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2021,
  • [22] SADDLE: Spacecraft Anomaly Detection using Deep Learning
    Srivastava, Ankit
    Badal, Neeraj
    Manoj, B. S.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 128 - 131
  • [23] A review on anomaly detection techniques using deep learning
    NOMURA Y.
    Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69 (09) : 650 - 656
  • [24] Hyperspectral Anomaly Detection Using Deep Learning: A Review
    Hu, Xing
    Xie, Chun
    Fan, Zhe
    Duan, Qianqian
    Zhang, Dawei
    Jiang, Linhua
    Wei, Xian
    Hong, Danfeng
    Li, Guoqiang
    Zeng, Xinhua
    Chen, Wenming
    Wu, Dongfang
    Chanussot, Jocelyn
    REMOTE SENSING, 2022, 14 (09)
  • [25] Anomaly Detection at the IoT Edge using Deep Learning
    Utomo, Darmawan
    Hsiung, Pao-Ann
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [26] Energy Anomaly Detection with Forecasting and Deep Learning
    Hollingsworth, Keith
    Rouse, Kathryn
    Cho, Jin
    Harris, Austin
    Sartipi, Mina
    Sozer, Sevin
    Enevoldson, Bryce
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4921 - 4925
  • [27] Robust Deep Learning Methods for Anomaly Detection
    Chalapathy, Raghavendra
    Khoa, Nguyen Lu Dang
    Chawla, Sanjay
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3507 - 3508
  • [28] Visual Anomaly Detection by Distributed Deep Learning
    Hu, Ruiguang
    Sun, Peng
    Ge, Yifan
    AOPC 2020: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2020, 11567
  • [29] Deep Learning for Medical Anomaly Detection - A Survey
    Fernando, Tharindu
    Gammulle, Harshala
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    ACM COMPUTING SURVEYS, 2021, 54 (07)
  • [30] An Unsupervised Deep Learning Framework for Anomaly Detection
    Kuo, Che-Wei
    Ying, Josh Jia-Ching
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2023, PT I, 2023, 13995 : 284 - 295