Anomaly Detection Using Deep Learning Respecting the Resources on Board a CubeSat

被引:1
|
作者
Horne, Ross [1 ]
Mauw, Sjouke [1 ]
Mizera, Andrzej [2 ]
Stemper, Andre [3 ]
Thoemel, Jan [4 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, Dept Comp Sci, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] IDEAS NCBR, Chmielna 69, PL-00801 Warsaw, Poland
[3] Univ Luxembourg, Fac Sci Technol & Med, 2 Ave Univ, L-4365 Esch Sur Alzette, Luxembourg
[4] Univ Luxembourg, L-1359 Luxembourg City, Luxembourg
来源
JOURNAL OF AEROSPACE INFORMATION SYSTEMS | 2023年
关键词
Satellites; Artificial Neural Network; Telemetry; Algorithms and Data Structures; Anomaly Detection; CubeSat; Data-Driven System Monitoring; Spacecraft Health Monitoring; Complex Data Analysis; Deep Learning;
D O I
10.2514/1.I011232
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We explore the feasibility of onboard anomaly detection using artificial neural networks for CubeSat systems and related spacecraft where computing resources are limited. We gather data for training and evaluation using a CubeSat in a laboratory for a scenario where a malfunctioning component affects temperature fluctuations across the control system. This data, published in an open repository, guide the selection of suitable features, neural network architecture, and metrics comprising our anomaly detection algorithm. The precision and recall of the algorithm demonstrate improvements as compared to out-of-limit methods, whereas our open-source implementation for a typical microcontroller exhibits small memory overhead, and hence may coexist with existing control software without introducing new hardware. These features make our solution feasible to deploy on board a CubeSat, and thus on other, more advanced types of satellites.
引用
收藏
页码:859 / 872
页数:14
相关论文
共 50 条
  • [1] Anomaly Detection in Logs Using Deep Learning
    Aziz, Ayesha
    Munir, Kashif
    IEEE ACCESS, 2024, 12 : 176124 - 176135
  • [2] Anomaly Detection of Breast Cancer Using Deep Learning
    Ahad Alloqmani
    Yoosef B. Abushark
    Asif Irshad Khan
    Arabian Journal for Science and Engineering, 2023, 48 : 10977 - 11002
  • [3] Anomaly Detection of Breast Cancer Using Deep Learning
    Alloqmani, Ahad
    Abushark, Yoosef B.
    Khan, Asif Irshad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 10977 - 11002
  • [4] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Chang, Yen-Jung
    Gong, Xinwei
    Wang, Tie
    Yang, Yang
    Long, Bo
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3569 - 3570
  • [5] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Wang, Tie
    Yang, Yang
    Long, Bo
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 894 - 896
  • [6] Anomaly Detection on Industrial Electrical Systems using Deep Learning
    Carratu, Marco
    Gallo, Vincenzo
    Pietrosanto, Antonio
    Sommella, Paolo
    Patrizi, Gabriele
    Bartolini, Alessandro
    Ciani, Lorenzo
    Catelani, Marcantonio
    Grasso, Francesco
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [7] Time series forecasting and anomaly detection using deep learning
    Iqbal, Amjad
    Amin, Rashid
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 182
  • [8] Anomaly Detection Techniques using Deep Learning in IoT: A Survey
    Sharma, Bhawana
    Sharma, Lokesh
    Lal, Chhagan
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), 2019, : 146 - 149
  • [9] Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
    Khan, Sardar Waqar
    Hafeez, Qasim
    Khalid, Muhammad Irfan
    Alroobaea, Roobaea
    Hussain, Saddam
    Iqbal, Jawaid
    Almotiri, Jasem
    Ullah, Syed Sajid
    SENSORS, 2022, 22 (17)
  • [10] Anomaly Detection in Electricity Consumption Data using Deep Learning
    Kardi, Mohammad
    AlSkaif, Tarek
    Tekinerdogan, Bedir
    Catalao, Joao P. S.
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,