Predicting Energy Generation in Large Wind Farms: A Data-Driven Study with Open Data and Machine Learning

被引:1
|
作者
Paula, Matheus [1 ]
Casaca, Wallace [2 ]
Colnago, Marilaine [3 ]
da Silva, Jose R. [1 ]
Oliveira, Kleber [1 ]
Dias, Mauricio A. [4 ]
Negri, Rogerio [5 ]
机构
[1] Sao Paulo State Univ UNESP, Fac Engn & Sci, BR-19274000 Rosana, Brazil
[2] Sao Paulo State Univ UNESP, Inst Biosci Letters & Exact Sci, BR-15054000 Sao Jose Do Rio Preto, Brazil
[3] Sao Paulo State Univ UNESP, Inst Chem, BR-4800060 Araraquara, Brazil
[4] Sao Paulo State Univ UNESP, Fac Sci & Technol, BR-19060080 Presidente Prudente, Brazil
[5] Sao Paulo State Univ UNESP, Sci & Technol Inst, BR-12245000 Sao Jose Dos Campos, Brazil
基金
巴西圣保罗研究基金会;
关键词
wind energy; forecasting; wind farms; machine learning; data science; LONG-TERM WIND; FORECAST; SYSTEM; BRAZIL;
D O I
10.3390/inventions8050126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wind energy has become a trend in Brazil, particularly in the northeastern region of the country. Despite its advantages, wind power generation has been hindered by the high volatility of exogenous factors, such as weather, temperature, and air humidity, making long-term forecasting a highly challenging task. Another issue is the need for reliable solutions, especially for large-scale wind farms, as this involves integrating specific optimization tools and restricted-access datasets collected locally at the power plants. Therefore, in this paper, the problem of forecasting the energy generated at the Praia Formosa wind farm, an eco-friendly park located in the state of Ceara, Brazil, which produces around 7% of the state's electricity, was addressed. To proceed with our data-driven analysis, publicly available data were collected from multiple Brazilian official sources, combining them into a unified database to perform exploratory data analysis and predictive modeling. Specifically, three machine-learning-based approaches were applied: Extreme Gradient Boosting, Random Forest, and Long Short-Term Memory Network, as well as feature-engineering strategies to enhance the precision of the machine intelligence models, including creating artificial features and tuning the hyperparameters. Our findings revealed that all implemented models successfully captured the energy-generation trends, patterns, and seasonality from the complex wind data. However, it was found that the LSTM-based model consistently outperformed the others, achieving a promising global MAPE of 4.55%, highlighting its accuracy in long-term wind energy forecasting. Temperature, relative humidity, and wind speed were identified as the key factors influencing electricity production, with peak generation typically occurring from August to November.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions
    Sakagianni, Aikaterini
    Koufopoulou, Christina
    Koufopoulos, Petros
    Kalantzi, Sofia
    Theodorakis, Nikolaos
    Nikolaou, Maria
    Paxinou, Evgenia
    Kalles, Dimitris
    Verykios, Vassilios S.
    Myrianthefs, Pavlos
    Feretzakis, Georgios
    ANTIBIOTICS-BASEL, 2024, 13 (11):
  • [42] Adapting Data-Driven Techniques to Improve Surrogate Machine Learning Model Performance
    Jones, Huw Rhys
    Popescu, Andrei C.
    Sulehman, Yusuf
    Mu, Tingting
    IEEE ACCESS, 2023, 11 : 23909 - 23925
  • [43] Clustering suicides: A data-driven, exploratory machine learning approach
    Ludwig, Birgit
    Koenig, Daniel
    Kapusta, Nestor D.
    Blueml, Victor
    Dorffner, Georg
    Vyssoki, Benjamin
    EUROPEAN PSYCHIATRY, 2019, 62 : 15 - 19
  • [44] Machine Learning and Data-Driven Techniques for the Control of SmartPower Generation Systems: An Uncertainty Handling Perspective
    Sun, Li
    You, Fengqi
    ENGINEERING, 2021, 7 (09) : 1239 - 1247
  • [45] Data-Driven Machine Learning in Environmental Pollution: Gains and Problems
    Liu, Xian
    Lu, Dawei
    Zhang, Aiqian
    Liu, Qian
    Jiang, Guibin
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (04) : 2124 - 2133
  • [46] Data-driven modeling of technology acceptance: A machine learning perspective
    Alwabel, Asim Suleman A.
    Zeng, Xiao-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [47] Data-driven polynomial chaos expansion for machine learning regression
    Torre, Emiliano
    Marelli, Stefano
    Embrechts, Paul
    Sudret, Bruno
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 388 : 601 - 623
  • [48] A DATA-DRIVEN WORKFLOW FOR PREDICTION OF FRACTURING PARAMETERS WITH MACHINE LEARNING
    Zhu, Zhihua
    Hsu, Maoya
    Kun, Ding
    Wang, Tianyu
    He, Xiaodong
    Tian, Shouceng
    THERMAL SCIENCE, 2024, 28 (02): : 1085 - 1090
  • [49] Data-driven visualization of the dynamics of machine learning in materials research
    Ye, Zhiwei
    Li, Jialing
    Wang, Wenjun
    Qin, Fanzhi
    Li, Keteng
    Tan, Hao
    Zhang, Chen
    JOURNAL OF CLEANER PRODUCTION, 2024, 449
  • [50] Data-Driven Consensus Protocol Classification Using Machine Learning
    Marcozzi, Marco
    Filatovas, Ernestas
    Stripinis, Linas
    Paulavicius, Remigijus
    MATHEMATICS, 2024, 12 (02)