Collisional-like dissipation in collisionless plasmas

被引:7
作者
Bandyopadhyay, Riddhi [1 ]
Yang, Yan [2 ]
Matthaeus, William H. [2 ]
Parashar, Tulasi N. [3 ]
Roytershteyn, Vadim [4 ]
Chasapis, Alexandros [5 ]
Gershman, D. J. [6 ]
Giles, B. L. [6 ]
Burch, J. L. [7 ]
机构
[1] Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[3] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington 6012, New Zealand
[4] Space Sci Inst, Boulder, CO 80301 USA
[5] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[6] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[7] Southwest Res Inst, San Antonio, TX 78238 USA
关键词
TURBULENCE; SCIENCE; ENERGY;
D O I
10.1063/5.0146986
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
When collisions are strong in a magnetized plasma, standard closures provide simple representations of dissipation in terms of coefficients of viscosity and resistivity. In the opposite limit of weak collisions, the analogous physical effects that lead to dissipation are present, but the simple approximations to describe them, the closures, are not available in general. But how different are these relationships when collisions are absent? Here, we inquire as to whether the collisionless case admits statistical relationships analogous to the viscous and resistive closures found in collisional plasma. We employ kinetic particle-in-cell simulations of proton-electron plasma as well as in situ observations from the Magnetospheric Multiscale Mission, to examine analogous viscous-like and resistive-like scaling in the weakly collisional regime. Rather surprisingly, we find that, on average, the collisionless cases do exhibit dissipation behavior very similar to the collisional plasmas. It is of theoretical significance that the relationships found are statistical and not deterministic as they are when collisional closures are enforced.
引用
收藏
页数:7
相关论文
共 67 条
[1]   Energy dissipation in turbulent reconnection [J].
Bandyopadhyay, R. ;
Chasapis, A. ;
Matthaeus, W. H. ;
Parashar, T. N. ;
Haggerty, C. C. ;
Shay, M. A. ;
Gershman, D. J. ;
Giles, B. L. ;
Burch, J. L. .
PHYSICS OF PLASMAS, 2021, 28 (11)
[2]   Statistics of Kinetic Dissipation in the Earth's Magnetosheath: MMS Observations [J].
Bandyopadhyay, Riddhi ;
Matthaeus, William H. ;
Parashar, Tulasi N. ;
Yang, Yan ;
Chasapis, Alexandros ;
Giles, Barbara L. ;
Gershman, Daniel J. ;
Pollock, Craig J. ;
Russell, Christopher T. ;
Strangeway, Robert J. ;
Torbert, Roy B. ;
Moore, Thomas E. ;
Burch, James L. .
PHYSICAL REVIEW LETTERS, 2020, 124 (25)
[3]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[4]   TOWARD A THEORY OF ASTROPHYSICAL PLASMA TURBULENCE AT SUBPROTON SCALES [J].
Boldyrev, Stanislav ;
Horaites, Konstantinos ;
Xia, Qian ;
Perez, Jean Carlos .
ASTROPHYSICAL JOURNAL, 2013, 777 (01)
[5]   Spectral energy transfer and dissipation of magnetic energy from fluid to kinetic scales [J].
Bowers, K. ;
Li, H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)
[6]   Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation [J].
Bowers, K. J. ;
Albright, B. J. ;
Yin, L. ;
Bergen, B. ;
Kwan, T. J. T. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[7]  
Boyd T., 1969, Plasma dynamics
[8]   The Solar Wind as a Turbulence Laboratory [J].
Bruno, Roberto ;
Carbone, Vincenzo .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) :7-+
[9]   Magnetospheric Multiscale Overview and Science Objectives [J].
Burch, J. L. ;
Moore, T. E. ;
Torbert, R. B. ;
Giles, B. L. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :5-21
[10]   PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVEN-WAVE TURBULENCE IN THE SOLAR WIND [J].
Chandran, Benjamin D. G. ;
Li, Bo ;
Rogers, Barrett N. ;
Quataert, Eliot ;
Germaschewski, Kai .
ASTROPHYSICAL JOURNAL, 2010, 720 (01) :503-515