Short-term prediction of wind power generation based on VMD-GSWOA-LSTM model

被引:2
|
作者
Yang, Tongguang [1 ]
Li, Wanting [1 ]
Huang, Zhiliang [1 ]
Peng, Li [1 ]
Yang, Jingyu [1 ]
机构
[1] Hunan City Univ, Key Lab Smart City Energy Sensing & Edge Comp Huna, Yiyang 413000, Peoples R China
基金
湖南省自然科学基金;
关键词
D O I
10.1063/5.0160223
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To improve the short-term wind power output prediction accuracy and overcome the model prediction instability problem, we propose a combined prediction model based on variational modal decomposition (VMD) combined with the improved whale algorithm (GSWOA) to optimize the long short-term memory network (LSTM) short-term wind power. First, VMD is utilized to decompose the wind power input sequence into modal components of different complexities, and the components are reconstructed into subcomponents with typical characteristics through approximate entropy, which reduces the computational scale of non-smooth sequence analysis. Second, the GSWOA is used to optimize the main influencing parameters of the LSTM model in order to obtain the weights and thresholds under the optimal LSTM model and to use the reconstructed individual subsequences. Finally, the actual data from two wind farms in Xinjiang and Northeast China are taken to verify the generalizability of the proposed model. The comparative analysis of the prediction results under different scenarios demonstrates that the improved model shows higher performance than the original model. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Short-term wind power prediction based on RR-VMD-LSTM
    Shi J.
    Zhao D.
    Wang L.
    Jiang T.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (21): : 63 - 70
  • [2] Short-Term PV Power Prediction Based on Optimized VMD and LSTM
    Wang, Lishu
    Liu, Yanhui
    Li, Tianshu
    Xie, Xinze
    Chang, Chengming
    IEEE ACCESS, 2020, 8 : 165849 - 165862
  • [3] Short-term wind power forecasting based on SSA-VMD-LSTM
    Gao, Xiaozhi
    Guo, Wang
    Mei, Chunxiao
    Sha, Jitong
    Guo, Yingjun
    Sun, Hexu
    ENERGY REPORTS, 2023, 9 : 335 - 344
  • [4] Short-term wind power forecasting based on SSA-VMD-LSTM
    Gao, Xiaozhi
    Guo, Wang
    Mei, Chunxiao
    Sha, Jitong
    Guo, Yingjun
    Sun, Hexu
    ENERGY REPORTS, 2023, 9 : 335 - 344
  • [5] Short-Term Prediction of Wind Power Based on Adaptive LSTM
    Xu, Gang
    Xia, Lu
    2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2018,
  • [6] Short-Term Power Load Prediction Based on VMD-SG-LSTM
    Sun, Qiu
    Cai, Huafeng
    IEEE ACCESS, 2022, 10 : 102396 - 102405
  • [7] Prediction of short-term wind power based on ESN improved by VMD
    Gao Xu
    Tang Zhenhao
    Han Hongzhi
    Bu Bing
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 674 - 678
  • [8] SHORT-TERM WIND SPEED PREDICTION BASED ON RESIDUALAND VMD-ELM-LSTM
    Zhang Y.
    Shi J.
    Li J.
    Yun S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (09): : 340 - 347
  • [9] VMD-CAT: A hybrid model for short-term wind power prediction
    Zheng, Huan
    Hu, Zhenda
    Wang, Xuguang
    Ni, Junhong
    Cui, Mengqi
    ENERGY REPORTS, 2023, 9 : 199 - 211
  • [10] VMD-CAT: A hybrid model for short-term wind power prediction
    Zheng, Huan
    Hu, Zhenda
    Wang, Xuguang
    Ni, Junhong
    Cui, Mengqi
    ENERGY REPORTS, 2023, 9 : 199 - 211