The Blow-Up of Solutions for a Class of Semi-linear Equations with p-Laplacian Viscoelastic Term Under Positive Initial Energy

被引:1
作者
Wu, Xiulan [1 ]
Yang, Xiaoxin [1 ]
Zhao, Yaxin [1 ]
机构
[1] Changchun Univ Sci & Technol, Sch Math & Stat, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-linear equations; p-Laplacian; viscoelastic term; blow up; positive initial energy; HEAT-EQUATION;
D O I
10.1007/s00009-023-02440-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with homogeneous Dirichlet boundary value problem to a class of semi-linear equations with p-Laplacian viscoelastic term?u/?t - ?u + ?(t)(0)g(t - s)?(p)u(x, s)ds = |u|(q(x)-2) u, x ? O, t = 0, 0 the bounded domain O C R-n (n = 3) with a smooth boundary. We prove that the weak solutions of the above problems blow up in finite time for all 2k < q(-) < q(+) < p < 2n/n-2 (k is defined in (2.5)), when the initial energy is positive and the function g satisfies suitable conditions. This result generalized and improved the result by Messaoudi (Abstr Appl Anal 2005(2):87-94, 2005).
引用
收藏
页数:18
相关论文
共 50 条
[41]   A blow-up result in a system of nonlinear viscoelastic wave equations with arbitrary positive initial energy [J].
Kafini, Mohammad ;
Messaoudi, Salim A. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (03) :602-612
[42]   EXISTENCE OF GLOBAL SOLUTIONS AND BLOW-UP FOR p-LAPLACIAN PARABOLIC EQUATIONS WITH LOGARITHMIC NONLINEARITY ON METRIC GRAPHS [J].
Wang, Ru ;
Chang, Xiaojun .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (51)
[43]   Blow-up of Solutions to Quasilinear Parabolic Equations with Singular Absorption and a Positive Initial Energy [J].
Bin Guo ;
Wenjie Gao .
Mediterranean Journal of Mathematics, 2016, 13 :2853-2861
[44]   Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity [J].
Zeng, Fugeng ;
Shi, Peng ;
Jiang, Min .
AIMS MATHEMATICS, 2021, 6 (03) :2559-2578
[45]   Blow-up of Solutions to Quasilinear Parabolic Equations with Singular Absorption and a Positive Initial Energy [J].
Guo, Bin ;
Gao, Wenjie .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :2853-2861
[46]   Blow-up for a semi-linear advection-diffusion system with energy conservation [J].
Dapeng Du ;
Jing Lü .
Chinese Annals of Mathematics, Series B, 2009, 30 :433-446
[47]   BLOW-UP OF THE SOLUTION FOR A CLASS OF POROUS MEDIUM EQUATION WITH POSITIVE INITIAL ENERGY [J].
吴秀兰 ;
高文杰 .
Acta Mathematica Scientia, 2013, 33 (04) :1024-1030
[48]   Blow-Up for a Semi-linear Advection-Diffusion System with Energy Conservation [J].
Dapeng DU Jing L School of Mathematical Sciences Fudan University Shanghai China Department of Mathematics Shanghai Maritime University Shanghai China .
ChineseAnnalsofMathematics, 2009, 30 (04) :433-446
[49]   BLOW-UP OF THE SOLUTION FOR A CLASS OF POROUS MEDIUM EQUATION WITH POSITIVE INITIAL ENERGY [J].
Wu, Xiulan ;
Gao, Wenjie .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) :1024-1030
[50]   Kelvin-Voight equation with p-Laplacian and damping term: Existence, uniqueness and blow-up [J].
Antontsev, S. N. ;
Khompysh, Kh. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) :1255-1273