The Blow-Up of Solutions for a Class of Semi-linear Equations with p-Laplacian Viscoelastic Term Under Positive Initial Energy

被引:0
|
作者
Wu, Xiulan [1 ]
Yang, Xiaoxin [1 ]
Zhao, Yaxin [1 ]
机构
[1] Changchun Univ Sci & Technol, Sch Math & Stat, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-linear equations; p-Laplacian; viscoelastic term; blow up; positive initial energy; HEAT-EQUATION;
D O I
10.1007/s00009-023-02440-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with homogeneous Dirichlet boundary value problem to a class of semi-linear equations with p-Laplacian viscoelastic term?u/?t - ?u + ?(t)(0)g(t - s)?(p)u(x, s)ds = |u|(q(x)-2) u, x ? O, t = 0, 0 the bounded domain O C R-n (n = 3) with a smooth boundary. We prove that the weak solutions of the above problems blow up in finite time for all 2k < q(-) < q(+) < p < 2n/n-2 (k is defined in (2.5)), when the initial energy is positive and the function g satisfies suitable conditions. This result generalized and improved the result by Messaoudi (Abstr Appl Anal 2005(2):87-94, 2005).
引用
收藏
页数:18
相关论文
共 50 条