EUV debris mitigation using magnetic nulls

被引:4
作者
Israeli, B. Y. [1 ,2 ]
Smiet, C. B. [1 ]
Simeni Simeni, M. [1 ,3 ]
Diallo, A. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
关键词
GAS;
D O I
10.1063/5.0152083
中图分类号
O59 [应用物理学];
学科分类号
摘要
Next generation EUV sources for photolithography use light produced by laser-produced plasmas (LPP) from ablated tin droplets. A major challenge for extending the lifetime of these devices is mitigating damage caused by deposition of tin debris on the sensitive collection mirror. Especially difficult to stop are high energy (up to 10 keV) highly charged tin ions created in the plasma. Existing solutions include the use of stopping gas, electric fields, and magnetic fields. One common configuration consists of a magnetic field perpendicular to the EUV emission direction, but such a system can result in ion populations that are trapped rather than removed. We investigate a previously unconsidered mitigation geometry consisting of a magnetic null by performing full-orbit integration of the ion trajectories in an EUV system with realistic dimensions and optimize the coil locations for the null configuration. The magnetic null prevents a fraction of ions from hitting the mirror comparable to that of the perpendicular field, but does not trap any ions due to the chaotic nature of ion trajectories that pass close to the null. This technology can potentially improve LPP-based EUV photolithography system efficiency and lifetime and may allow for a different, more efficient formulation of buffer gas.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Measurements of hydrogen gas stopping efficiency for tin ions from laser-produced plasma [J].
Abramenko, D. B. ;
Spiridonov, M. V. ;
Krainov, P. V. ;
Krivtsun, V. M. ;
Astakhov, D. I. ;
Medvedev, V. V. ;
van Kampen, M. ;
Smeets, D. ;
Koshelev, K. N. .
APPLIED PHYSICS LETTERS, 2018, 112 (16)
[2]   Physical processes in EUV sources for microlithography [J].
Banine, V. Y. ;
Koshelev, K. N. ;
Swinkels, G. H. P. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (25)
[3]   Temporally and spatially resolved ion dynamics of droplet-based laser-produced tin plasmas in lateral expansion direction [J].
Brandstatter, Markus ;
Gambino, Nadia ;
Abhari, Reza S. .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (04)
[4]   In situ collector cleaning and extreme ultraviolet reflectivity restoration by hydrogen plasma for extreme ultraviolet sources [J].
Elg, Daniel T. ;
Sporre, John R. ;
Panici, Gianluca A. ;
Srivastava, Shailendra N. ;
Ruzic, David N. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (02)
[5]   Magnetic debris mitigation system for extreme ultraviolet sources [J].
Elg, Daniel T. ;
Sporre, John R. ;
Curreli, Davide ;
Shchelkanov, Ivan A. ;
Ruzic, David N. ;
Umstadter, Karl R. .
JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2015, 14 (01)
[6]  
Grad H., 1961, CONTAINMENT CUSPED P, V9496
[7]   Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects [J].
Harilal, S. S. ;
O'Shay, B. ;
Tao, Y. ;
Tillack, M. S. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 86 (03) :547-553
[8]   High-energy ions from Nd:YAG laser ablation of tin microdroplets: comparison between experiment and a single-fluid hydrodynamic model [J].
Hemminga, D. J. ;
Poirier, L. ;
Basko, M. M. ;
Hoekstra, R. ;
Ubachs, W. ;
Versolato, O. O. ;
Sheil, J. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (10)
[9]  
Hoshino H., 2006, US Patent, Patent No. [6,987,279, 6987279]
[10]   The development progress of the High Power LPP-EUV light source using a magnetic field [J].
Hosoda, Hirokazu ;
Nagai, Shinji ;
Yanagida, Tatsuya ;
Shiraishi, Yutaka ;
Ueno, Yoshifumi ;
Miyao, Kenichi ;
Hayashi, Hideyuki ;
Watanabe, Yukio ;
Abe, Tamotsu ;
Nakarai, Hiroaki ;
Mizoguchi, Hakaru .
EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY XII, 2021, 11609