FIRM HOMOMORPHISMS OF RINGS AND SEMIGROUPS

被引:0
作者
Marin, Leandro [1 ]
Laan, Valdis [2 ]
机构
[1] Univ Murcia, Fac Comp Sci, Murcia, Spain
[2] Univ Tartu, Inst Math & Stat, Tartu, Estonia
来源
THEORY AND APPLICATIONS OF CATEGORIES | 2023年 / 39卷
关键词
Concrete functor; firm homomorphism; firm ring; firm module; closed module; restriction of scalars; MORITA EQUIVALENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define firm homomorphisms between rings without identity in such a way that the category of rings with identity will become a full subcategory of the category of firm rings with firm homomorphisms as morphisms. We prove that firm homomorphisms are in one-to-one correspondence with pairs of compatible concrete functors between certain module categories. This correspondence is given by the restriction of scalars. We also prove the semigroup theoretic analogues of these results and give a list of examples of firm homomorphisms.
引用
收藏
页数:43
相关论文
共 18 条
  • [1] Adamek J., 2006, REPR THEORY APPL CAT, V17, P1
  • [2] Anh P. N., 1987, Tsukuba J. Math, V11, P1
  • [3] Borceux F., 1994, HDB CATEGORICAL ALGE, V50
  • [4] Garcia J. L., 2000, CONT MATH, V259, P223
  • [5] Rings having a Morita-like equivalence
    García, JL
    Marín, L
    [J]. COMMUNICATIONS IN ALGEBRA, 1999, 27 (02) : 665 - 680
  • [6] Morita theory for associative rings
    García, JL
    Marín, L
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (12) : 5835 - 5856
  • [7] Kelly G. M., 1974, Springer Lecture Notes in Mathematics, V420, P75
  • [8] Kil'p M., 2000, De Gruyter Expositions in Mathematics, V29, DOI DOI 10.1515/9783110812909
  • [9] MONOMORPHISMS IN CATEGORIES OF FIRM ACTS
    Laan, Valdis
    Reimaa, Ulo
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (03) : 267 - 279
  • [10] Morita equivalence of factorizable semigroups
    Laan, Valdis
    Reimaat, Ulo
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (04) : 723 - 741