INSTABILITY OF HYSTERETIC PHASE INTERFACES IN A MEAN-FIELD MODEL WITH INHOMOGENEITIES

被引:1
作者
Herrmann, Michael [1 ]
Niethammer, Barbara [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Math, D-38092 Braunschweig, Germany
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
hysteretic phase interfaces; instability of traveling waves; rate-independent evolution of particle systems; TRANSITIONS; DYNAMICS; SYSTEMS; VISCOELASTICITY; DISSIPATION; KRAMERS;
D O I
10.1137/22M153197X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a system of nonidentical bistable particles that is driven by a dynamical constraint and coupled through a nonlocal mean-field. Assuming piecewise affine constitutive laws we prove the existence of traveling wave solutions and characterize their dynamical stability. Our findings explain the two dynamical regimes for phase interface that can be observed in numerical simulations with different parameters. We further discuss the convergence to a rate-independent model with strong hysteresis in the limit of vanishing relaxation time.
引用
收藏
页码:1422 / 1443
页数:22
相关论文
共 50 条
  • [41] Mean-field approximation and phase transitions in an Ising-voter model on directed regular random graphs
    Lipowski, Adam
    Ferreira, Antonio Luis
    Lipowska, Dorota
    Napierala-Batygolska, Aleksandra
    PHYSICAL REVIEW E, 2025, 111 (02)
  • [42] The grand canonical ABC model: a reflection asymmetric mean-field Potts model
    Barton, J.
    Lebowitz, J. L.
    Speer, E. R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (06)
  • [43] Functional Role of Synchronization: A Mean-Field Control Perspective
    Mehta, Prashant
    Meyn, Sean
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2025, 38 (01) : 313 - 337
  • [44] Avalanche shape and exponents beyond mean-field theory
    Dobrinevski, Alexander
    Le Doussal, Pierre
    Wiese, Kay Joerg
    EPL, 2014, 108 (06)
  • [45] Calorimetric glass transition in a mean-field theory approach
    Mariani, Manuel Sebastian
    Parisi, Giorgio
    Rainone, Corrado
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (08) : 2361 - 2366
  • [46] A RETARDED MEAN-FIELD APPROACH FOR INTERACTING FIBER STRUCTURES
    Borsche, R.
    Klar, A.
    Nessler, C.
    Roth, A.
    Tse, O.
    MULTISCALE MODELING & SIMULATION, 2017, 15 (03) : 1130 - 1154
  • [47] Hard-core collisional dynamics in Hamiltonian mean-field model
    Melo, I
    Figueiredo, A.
    Rocha Filho, T. M.
    Miranda Filho, L. H.
    Elskens, Y.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 87
  • [48] Mean-Field Model of the Collapse Transition of Brushes inside Cylindrical Nanopores
    Li, Cheng-Wu
    Merlitz, Holger
    Sommer, Jens-Uwe
    MACROMOLECULES, 2020, 53 (15) : 6711 - 6719
  • [49] Out-of-equilibrium dynamical mean-field equations for the perceptron model
    Agoritsas, Elisabeth
    Biroli, Giulio
    Urbani, Pierfrancesco
    Zamponi, Francesco
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (08)
  • [50] Complexity and disequilibrium in the dipole-type Hamiltonian mean-field model
    Atenas, B.
    Curilef, S.
    Pennini, F.
    CHAOS, 2022, 32 (11)