INSTABILITY OF HYSTERETIC PHASE INTERFACES IN A MEAN-FIELD MODEL WITH INHOMOGENEITIES

被引:1
作者
Herrmann, Michael [1 ]
Niethammer, Barbara [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Math, D-38092 Braunschweig, Germany
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
hysteretic phase interfaces; instability of traveling waves; rate-independent evolution of particle systems; TRANSITIONS; DYNAMICS; SYSTEMS; VISCOELASTICITY; DISSIPATION; KRAMERS;
D O I
10.1137/22M153197X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a system of nonidentical bistable particles that is driven by a dynamical constraint and coupled through a nonlocal mean-field. Assuming piecewise affine constitutive laws we prove the existence of traveling wave solutions and characterize their dynamical stability. Our findings explain the two dynamical regimes for phase interface that can be observed in numerical simulations with different parameters. We further discuss the convergence to a rate-independent model with strong hysteresis in the limit of vanishing relaxation time.
引用
收藏
页码:1422 / 1443
页数:22
相关论文
共 31 条
[1]  
Brokate M., 1996, Applied Mathematical Science, V121, DOI [10.1007/978-1-4612-4048-8, DOI 10.1007/978-1-4612-4048-8]
[2]   Sharp limit of the viscous Cahn-Hilliard equation and thermodynamic consistency [J].
Dreyer, Wolfgang ;
Guhlke, Clemens .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2017, 29 (04) :913-934
[3]   Hysteresis and phase transition in many-particle storage systems [J].
Dreyer, Wolfgang ;
Guhlke, Clemens ;
Herrmann, Michael .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2011, 23 (03) :211-231
[4]   Thermalization of a driven bi-stable FPU chain [J].
Efendiev, Yalchin R. ;
Truskinovsky, Lev .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2010, 22 (6-8) :679-698
[5]   Irreversibility and hysteresis for a forward-backward diffusion equation [J].
Evans, LC .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (11) :1599-1620
[6]   HYSTERESIS IN DISCRETE-SYSTEMS OF POSSIBLY INTERACTING ELEMENTS WITH A DOUBLE-WELL ENERGY [J].
FEDELICH, B ;
ZANZOTTO, G .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (03) :319-342
[7]   Transition fronts and their universality classes [J].
Gorbushin, N. ;
Vainchtein, A. ;
Truskinovsky, L. .
PHYSICAL REVIEW E, 2022, 106 (02)
[8]   Hysteresis and Phase Transitions in a Lattice Regularization of an Ill-Posed Forward-Backward Diffusion Equation [J].
Helmers, Michael ;
Herrmann, Michael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 230 (01) :231-275
[9]   INTERFACE DYNAMICS IN DISCRETE FORWARD-BACKWARD DIFFUSION EQUATIONS [J].
Helmers, Michael ;
Herrmann, Michael .
MULTISCALE MODELING & SIMULATION, 2013, 11 (04) :1261-1297
[10]   Rate-Independent Dynamics and Kramers-Type Phase Transitions in Nonlocal Fokker-Planck Equations with Dynamical Control [J].
Herrmann, Michael ;
Niethammer, Barbara ;
Velazquez, Juan J. L. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 214 (03) :803-866