Predicting Colorectal Cancer Using Machine and Deep Learning Algorithms: Challenges and Opportunities

被引:15
|
作者
Alboaneen, Dabiah [1 ]
Alqarni, Razan [1 ]
Alqahtani, Sheikah [1 ]
Alrashidi, Maha [1 ]
Alhuda, Rawan [1 ]
Alyahyan, Eyman [1 ]
Alshammari, Turki [2 ,3 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Sci & Humanities, Comp Sci Dept, Jubail Ind City 31961, Saudi Arabia
[2] King Fahad Specialist Hosp Dammam, Dept Surg, Colorectal Surg Unit, Dammam 31444, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Coll Med, Dammam 31441, Saudi Arabia
关键词
artificial intelligence; colorectal cancer; deep learning; early diagnosis; machine learning; FEATURES;
D O I
10.3390/bdcc7020074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the three most serious and deadly cancers in the world is colorectal cancer. The most crucial stage, like with any cancer, is early diagnosis. In the medical industry, artificial intelligence (AI) has recently made tremendous strides and showing promise for clinical applications. Machine learning (ML) and deep learning (DL) applications have recently gained popularity in the analysis of medical texts and images due to the benefits and achievements they have made in the early diagnosis of cancerous tissues and organs. In this paper, we intend to systematically review the state-of-the-art research on AI-based ML and DL techniques applied to the modeling of colorectal cancer. All research papers in the field of colorectal cancer are collected based on ML and DL techniques, and they are then classified into three categories: the aim of the prediction, the method of the prediction, and data samples. Following that, a thorough summary and a list of the studies gathered under each topic are provided. We conclude our study with a critical discussion of the challenges and opportunities in colorectal cancer prediction using ML and DL techniques by concentrating on the technical and medical points of view. Finally, we believe that our study will be helpful to scientists who are considering employing ML and DL methods to diagnose colorectal cancer.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] A survey on machine and deep learning in semiconductor industry: methods, opportunities, and challenges
    An Chi Huang
    Sheng Hui Meng
    Tian Jiun Huang
    Cluster Computing, 2023, 26 : 3437 - 3472
  • [22] Predicting Stock Prices Using Machine Learning Methods and Deep Learning Algorithms: The Sample of the Istanbul Stock Exchange
    Demirel, Ugur
    Cam, Handan
    Unlu, Ramazan
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (01): : 63 - 82
  • [23] Comparative study and analysis on skin cancer detection using machine learning and deep learning algorithms
    Nancy, V. Auxilia Osvin
    Prabhavathy, P.
    Arya, Meenakshi S.
    Ahamed, B. Shamreen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45913 - 45957
  • [24] Comparative study and analysis on skin cancer detection using machine learning and deep learning algorithms
    V. Auxilia Osvin Nancy
    P. Prabhavathy
    Meenakshi S. Arya
    B. Shamreen Ahamed
    Multimedia Tools and Applications, 2023, 82 : 45913 - 45957
  • [25] Machine learning in pharmacometrics: Opportunities and challenges
    McComb, Mason
    Bies, Robert
    Ramanathan, Murali
    BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2022, 88 (04) : 1482 - 1499
  • [26] A survey on deep learning for cybersecurity: Progress, challenges, and opportunities
    Macas, Mayra
    Wu, Chunming
    Fuertes, Walter
    COMPUTER NETWORKS, 2022, 212
  • [27] The Role of Deep Learning in Manufacturing Applications: Challenges and Opportunities
    Malhan, Rishi
    Gupta, Satyandra K.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2023, 23 (06)
  • [28] Wind Power Prediction Using Machine Learning and Deep Learning Algorithms
    Simsek, Ecem
    Gungor, Aysemuge
    Karavelioglu, Oyku
    Yerli, Mustafa Tolga
    Kuyumcuoglu, Nejat Goktug
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [29] Medical Imaging using Machine Learning and Deep Learning Algorithms: A Review
    Latif, Jahanzaib
    Xiao, Chuangbai
    Imran, Azhar
    Tu, Shanshan
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND ENGINEERING TECHNOLOGIES (ICOMET), 2019,
  • [30] A Review on Automated Cancer Detection in Medical Images using Machine Learning and Deep Learning based Computational Techniques: Challenges and Opportunities
    Manhas, Jatinder
    Gupta, Rachit Kumar
    Roy, Partha Pratim
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2022, 29 (05) : 2893 - 2933