Image Super-Resolution Using Dilated Window Transformer

被引:4
|
作者
Park, Soobin [1 ]
Choi, Yong Suk [2 ]
机构
[1] Hanyang Univ, Dept Artificial Intelligence, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Comp Sci, Seoul 04763, South Korea
来源
IEEE ACCESS | 2023年 / 11卷 / 60028-60039期
基金
新加坡国家研究基金会;
关键词
Image super-resolution; self-attention mechanism; transformer; window-based self-attention;
D O I
10.1109/ACCESS.2023.3284539
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Transformer-based networks using attention mechanisms have shown promising results in low-level vision tasks, such as image super-resolution (SR). Specifically, recent studies that utilize window-based self-attention mechanisms have exhibited notable advancements in image SR. However, window-based self-attention, results in a slower expansion of the receptive field, thereby restricting the modeling of long-range dependencies. To address this issue, we introduce a novel dilated window transformer, namely DWT, which utilizes a dilation strategy. We employ a simple yet efficient dilation strategy that enlarges the window by inserting intervals between the tokens of each window to enable rapid and effective expansion of the receptive field. In particular, we adjust the interval between the tokens to become wider as the layers go deeper. This strategy enables the extraction of local features by allowing interaction between neighboring tokens in the shallow layers while also facilitating efficient extraction of global features by enabling interaction between not only adjacent tokens but also distant tokens in the deep layers. We conduct extensive experiments on five benchmark datasets to demonstrate the superior performance of our proposed method. Our DWT surpasses the state-of-the-art network of similar sizes by a PSNR margin of 0.11dB to 0.27dB on the Urban100 dataset. Moreover, even when compared to state-of-the-art network with about 1.4 times more parameters, DWT achieves competitive results for both quantitative and visual comparisons.
引用
收藏
页码:60028 / 60039
页数:12
相关论文
共 50 条
  • [1] Image super-resolution using dilated neighborhood attention transformer
    Chen, Li
    Zuo, Jinnian
    Du, Kai
    Zou, Jinsong
    Yin, Shaoyun
    Wang, Jinyu
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [2] Transformer for Single Image Super-Resolution
    Lu, Zhisheng
    Li, Juncheng
    Liu, Hong
    Huang, Chaoyan
    Zhang, Linlin
    Zeng, Tieyong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 456 - 465
  • [3] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230
  • [4] Single Image Super-resolution Using Spatial Transformer Networks
    Wang, Qiang
    Fan, Huijie
    Cong, Yang
    Tang, Yandong
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 564 - 567
  • [5] SVTSR: image super-resolution using scattering vision transformer
    Liang, Jiabao
    Jin, Yutao
    Chen, Xiaoyan
    Huang, Haotian
    Deng, Yue
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Image Super-Resolution Using a Simple Transformer Without Pretraining
    Huan Liu
    Mingwen Shao
    Chao Wang
    Feilong Cao
    Neural Processing Letters, 2023, 55 : 1479 - 1497
  • [7] Image Super-Resolution Using a Simple Transformer Without Pretraining
    Liu, Huan
    Shao, Mingwen
    Wang, Chao
    Cao, Feilong
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1479 - 1497
  • [8] Spatial relaxation transformer for image super-resolution
    Li, Yinghua
    Zhang, Ying
    Zeng, Hao
    He, Jinglu
    Guo, Jie
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (07)
  • [9] Dual Aggregation Transformer for Image Super-Resolution
    Chen, Zheng
    Zhang, Yulun
    Gu, Jinjin
    Kong, Linghe
    Yang, Xiaokang
    Yu, Fisher
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12278 - 12287
  • [10] DCSR: Dilated Convolutions for Single Image Super-Resolution
    Zhang, Zhendong
    Wang, Xinran
    Jung, Cheolkon
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) : 1625 - 1635