Regulating electrochemistry kinetics and discharge product selectivity with near-free cobalt single-atom catalyst in Li-O2 batteries

被引:17
作者
Zheng, Li-Jun [1 ]
Yan, Yan [1 ]
Wang, Xiao-Xue [1 ,3 ]
Song, Li-Na [1 ]
Wang, Huan-Feng [2 ]
Xu, Ji-Jing [1 ,3 ]
机构
[1] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[2] Zhengzhou Univ Technol, Coll Chem & Food, Zhengzhou 450044, Peoples R China
[3] Jilin Univ, Int Ctr Future Sci, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-O; 2; battery; Cathode; Electrocatalyst; Near-free Co active site; Preferential growth of discharge products; INTERFACIAL WATER; OXYGEN; SURFACE; SITES; COORDINATION; REDUCTION; EVOLUTION; ELECTROREDUCTION; ENVIRONMENT; SOLVENTS;
D O I
10.1016/j.ensm.2023.01.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recognization of the dynamic evolution of the catalytic active site and battery reaction intermediates under working conditions is essential for optimal design of advanced electrocatalysts for lithium-oxygen batteries, yet remaining formidable challenges because of size, carrier, and surface interface effect on traditional supported catalysts. Herein, based on the designed single-Co-atom catalyst model with uniform and isolated active centers, the structural dynamic evolution of near-free active centers and the complicated reaction pathways of lithium-oxygen electrochemistry is firstly in-depth identified at the atomic level by virtue of structural and ingredient measurements at multiscale levels. We discover that the near-free Co site (Co1-N3) tends to be dynamically released from the nitrogen-carbon substrate, and then forms a freer O*-Co1-N2 site, facilitating the surface adsorption and activation of the key *O intermediate for oxygen reduction reaction during discharge. More interestingly, near-free Co exists a better lattice match with the (100) crystal plane of Li2O2, forming an easily decomposed single-oriented sheet-like Li2O2 with higher electron transport capacity and weaker *LiO2 combination, thus improving the kinetics of oxygen evolution reaction during recharge. The integration of multiple test techniques on single-atom catalyst model in this study may pave the way for revealing important dynamic evolution steps and reaction mechanisms at three-phase boundaries in metal-air batteries.
引用
收藏
页码:331 / 341
页数:11
相关论文
共 57 条
  • [1] Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/NCHEM.2132, 10.1038/nchem.2132]
  • [2] Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy
    Ataka, K
    Yotsuyanagi, T
    Osawa, M
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) : 10664 - 10672
  • [3] Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.128, 10.1038/nenergy.2016.128]
  • [4] Spin-resolved characterization of single cobalt phthalocyanine molecules on a ferromagnetic support
    Brede, J.
    Wiesendanger, R.
    [J]. PHYSICAL REVIEW B, 2012, 86 (18):
  • [5] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
  • [6] Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction
    Cao, Linlin
    Luo, Qiquan
    Chen, Jiajia
    Wang, Lan
    Lin, Yue
    Wang, Huijuan
    Liu, Xiaokang
    Shen, Xinyi
    Zhang, Wei
    Liu, Wei
    Qi, Zeming
    Jiang, Zheng
    Yang, Jinlong
    Yao, Tao
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution
    Cao, Linlin
    Luo, Qiquan
    Liu, Wei
    Lin, Yue
    Liu, Xiaokang
    Cao, Yuanjie
    Zhang, Wei
    Wu, Yuen
    Yang, Jinlong
    Yao, Tao
    Wei, Shiqiang
    [J]. NATURE CATALYSIS, 2019, 2 (02) : 134 - 141
  • [8] Atomic Fe Dispersed on N-Doped Carbon Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction
    Chen, Yifan
    Li, Zhijuan
    Zhu, Yanbo
    Sun, Dongmei
    Liu, Xien
    Xu, Lin
    Tang, Yawen
    [J]. ADVANCED MATERIALS, 2019, 31 (08)
  • [9] SURFACE-ATOM X-RAY PHOTOEMISSION FROM CLEAN METALS - CU, AG, AND AU
    CITRIN, PH
    WERTHEIM, GK
    BAER, Y
    [J]. PHYSICAL REVIEW B, 1983, 27 (06): : 3160 - 3175
  • [10] X-RAY SPECTROSCOPIC STUDIES OF NICKEL-COMPLEXES, WITH APPLICATION TO THE STRUCTURE OF NICKEL SITES IN HYDROGENASES
    COLPAS, GJ
    MARONEY, MJ
    BAGYINKA, C
    KUMAR, M
    WILLIS, WS
    SUIB, SL
    BAIDYA, N
    MASCHARAK, PK
    [J]. INORGANIC CHEMISTRY, 1991, 30 (05) : 920 - 928