Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L.

被引:7
|
作者
Li, Yanling [1 ,2 ,3 ,4 ,5 ,6 ]
Xiao, Lu [1 ,2 ,3 ,4 ,5 ,6 ]
Zhao, Zhi [1 ,2 ,3 ,4 ,5 ,6 ]
Zhao, Hongping [1 ,2 ,3 ,4 ,5 ,6 ]
Du, Dezhi [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Qinghai Univ, Acad Agr & Forestry Sci, Xining 810016, Peoples R China
[2] Lab Res & Utilizat Qinghai Tibet Plateau Germplasm, Xining 810016, Peoples R China
[3] Natl Oil Crop Genet Improvement Ctr, Qinghai Res Branch, Xining 810016, Peoples R China
[4] Key Lab Spring Rapeseed Genet Improvement Qinghai, Xining 810016, Peoples R China
[5] Qinghai Spring Rape Engn Res Ctr, Xining 810016, Peoples R China
[6] Minist Agr & Rural Areas, Spring Rape Sci Observat Expt Stn, Xining 810016, Peoples R China
来源
BMC GENOMIC DATA | 2023年 / 24卷 / 01期
关键词
B; napus; PEBP; Evolutionary analysis; Gene duplication; Expression analysis; TRANSCRIPTIONAL ACTIVATION; FLOWERING INITIATION; PROTEIN; FT; ARABIDOPSIS; BINDING; REPRESSOR; ACTS; TFL1; BFT;
D O I
10.1186/s12863-023-01127-4
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background With the release of genomic data for B.rapa, B.oleracea, and B.napus, research on the genetic and molecular functions of Brassica spp. has entered a new stage. PEBP genes in plants play an important role in the transition to flowering as well as seed development and germination. Molecular evolutionary and functional analyses of the PEBP gene family in B.napus based on molecular biology methods can provide a theoretical basis for subsequent investigations of related regulators. Results In this paper, we identified a total of 29 PEBP genes from B.napus that were located on 14 chromosomes and 3 random locations. Most members contained 4 exons and 3 introns; motif 1 and motif 2 were the characteristic motifs of PEBP members. On the basis of intraspecific and interspecific collinearity analyses, it is speculated that fragment replication and genomic replication are the main drivers of for the amplification and evolution of the PEBP gene in the B.napus genome. The results of promoter cis-elements prediction suggest that BnPEBP family genes are inducible promoters, which may directly or indirectly participate in multiple regulatory pathways of plant growth cycle. Furthermore, the tissue-specific expression results show that the expression levels of BnPEBP family genes in different tissues were quite different, but the gene expression organization and patterns of the same subgroup were basically the same. qRT.PCR revealed certain spatiotemporal patterns in the expression of the PEBP subgroups in roots, stems, leaves, buds, and siliques, was tissue-specific, and related to function. Conclusions A systematic comparative analysis of the B.napus PEBP gene family was carried out at here. The results of gene identification, phylogenetic tree construction, structural analysis, gene duplication analysis, prediction of promoter cis- elements and interacting proteins, and expression analysis provide a reference for exploring the molecular mechanisms of BnPEBP family genes in future research.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L.
    Yanling Li
    Lu Xiao
    Zhi Zhao
    Hongping Zhao
    Dezhi Du
    BMC Genomic Data, 24
  • [2] Identification, evolution and expression analyses of whole genome-wide TLP gene family in Brassica napus
    Tong Wang
    Jingjing Hu
    Xiao Ma
    Chunjin Li
    Qihang Yang
    Shuyan Feng
    Miaomiao Li
    Nan Li
    Xiaoming Song
    BMC Genomics, 21
  • [3] Identification, evolution and expression analyses of whole genome-wide TLP gene family in Brassica napus
    Wang, Tong
    Hu, Jingjing
    Ma, Xiao
    Li, Chunjin
    Yang, Qihang
    Feng, Shuyan
    Li, Miaomiao
    Li, Nan
    Song, Xiaoming
    BMC GENOMICS, 2020, 21 (01)
  • [4] Genome-Wide Identification, Evolution and Expression Analyses of GA2ox Gene Family in Brassica napus L.
    Li, Yanhua
    Huang, Hualei
    Shi, Youming
    Huang, Shuqin
    Liu, Tao
    Xiao, Changming
    Tian, Xiaoqing
    Zhao, Ping
    Dai, Xiaoyan
    Huang, Taocui
    Zhou, Yan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (03) : 815 - 835
  • [5] Genome-Wide Identification, Evolution and Expression Analyses of GA2ox Gene Family in Brassica napus L.
    Li, Yanhua
    Huang, Hualei
    Shi, Youming
    Huang, Shuqin
    Liu, Tao
    Xiao, Changming
    Tian, Xiaoqing
    Zhao, Ping
    Dai, Xiaoyan
    Huang, Taocui
    Zhou, Yan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2022,
  • [6] Genome-wide identification, evolution, and expression analysis of HVA22 gene family in Brassica napus L.
    Wang, Ping
    Wang, Lirong
    GENETIC RESOURCES AND CROP EVOLUTION, 2025,
  • [7] Genome-Wide Identification and Evolutionary and Expression Analyses of the Cyclin B Gene Family in Brassica napus
    Li, Mingyue
    Zhang, Minghao
    Meng, Boyu
    Miao, Likai
    Fan, Yonghai
    PLANTS-BASEL, 2024, 13 (12):
  • [8] Genome-Wide Identification and Characterization of the CCT Gene Family in Rapeseed (Brassica napus L.)
    Yu, Liyiqi
    Xia, Jichun
    Jiang, Rujiao
    Wang, Jiajia
    Yuan, Xiaolong
    Dong, Xinchao
    Chen, Zhenjie
    Zhao, Zizheng
    Wu, Boen
    Zhan, Lanlan
    Zhang, Ranfeng
    Tang, Kang
    Li, Jiana
    Xu, Xinfu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [9] Genome-Wide Identification of the TGA Gene Family and Expression Analysis under Drought Stress in Brassica napus L.
    Duan, Yi
    Xu, Zishu
    Liu, Hui
    Wang, Yanhui
    Zou, Xudong
    Zhang, Zhi
    Xu, Ling
    Xu, Mingchao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [10] ZF-HD gene family in rapeseed (Brassica napus L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses
    Xu, Xinrui
    Zhou, Hui
    Yang, Qiaohui
    Yang, Yuyao
    Pu, Xiaobin
    BMC GENOMICS, 2024, 25 (01):