High-frequency homogenization of nonstationary periodic equations

被引:2
作者
Dorodnyi, M. A. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
关键词
Schrodinger-type equations; hyperbolic equations; spectral bands; homogenization; operator error estimates; GREENS-FUNCTION ASYMPTOTICS; PARABOLIC CAUCHY-PROBLEM; BLOCH APPROXIMATION; SPECTRAL APPROACH; INTERNAL EDGES; THEOREMS; GAP;
D O I
10.1080/00036811.2023.2199031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In L-2(R), we consider an elliptic differential operator A(e), e >0, of the form A(e) = - d/dx g(x/e) d/dx + e(-2)V(x/e) with periodic coefficients. For the nonstationary Schrodinger equation with the Hamiltonian Ae and for the hyperbolic equation with the operator Ae, analogs of homogenization problems, related to the edges of the spectral bands of the operator A(e), are studied (the so-called high-frequency homogenization). For the solutions of the Cauchy problems for these equations with special initial data, approximations in L-2(R)-norm for small e are obtained.
引用
收藏
页码:533 / 561
页数:29
相关论文
共 48 条
  • [11] Birman M. Sh., 2006, ALGEBRA ANALIZ, V18, P1
  • [12] [Бирман Михаил Шлемович Birman Mikhail Shlemovich], 2008, [Алгебра и анализ, St. Petersburg Mathematical Journal, Algebra i analiz], V20, P30
  • [13] Birman MS., 2004, ST PETERSB MATH J, V15, P639, DOI 10.1090/S1061-0022-04-00827-1
  • [14] Dynamic effective anisotropy: Asymptotics, simulations, and microwave experiments with dielectric fibers
    Ceresoli, Lauris
    Abdeddaim, Redha
    Antonakakis, Tryfon
    Maling, Ben
    Chmiaa, Mohammed
    Sabouroux, Pierre
    Tayeb, Gerard
    Enoch, Stefan
    Craster, Richard V.
    Guenneau, Sebastien
    [J]. PHYSICAL REVIEW B, 2015, 92 (17)
  • [15] Conca C, 2005, ASYMPTOTIC ANAL, V41, P71
  • [16] Bloch approximation in homogenization and applications
    Conca, C
    Orive, R
    Vanninathan, M
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (05) : 1166 - 1198
  • [17] Homogenization of periodic structures via Bloch decomposition
    Conca, C
    Vanninathan, M
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (06) : 1639 - 1659
  • [18] High-frequency homogenization for periodic media
    Craster, R. V.
    Kaplunov, J.
    Pichugin, A. V.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2120): : 2341 - 2362
  • [19] Operator error estimates for homogenization of the nonstationary Schrodinger-type equations: sharpness of the results
    Dorodnyi, M. A.
    [J]. APPLICABLE ANALYSIS, 2022, 101 (16) : 5582 - 5614
  • [20] Spectral approach to homogenization of hyperbolic equations with periodic coefficients
    Dorodnyi, M. A.
    Suslina, T. A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) : 7463 - 7522