A Bayesian inference approach for parametric identification through optimal control method

被引:1
作者
Bhattacharyya, Mainak [1 ,2 ]
Feissel, Pierre [1 ]
机构
[1] Univ Technol Compiegne, Ctr Rech Royallieu, Lab Roberval, Compiegne, France
[2] Univ Technol Compiegne, Lab Roberval, Rue Docteur Schweitzer CS 60319, F-60203 Compiegne, France
关键词
Bayesian inference; inverse problem; parametric identification; ELASTIC PROPERTIES; MODELS; UNCERTAINTIES; CONSTANTS; NETWORK;
D O I
10.1002/nme.7242
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The objective of the research is to obtain deterministic and probabilistic resolution of material parameters from full field measurements of kinematic data acquired from digital image correlation. The deterministic inverse problem involves formulation of an optimal control approach where the complete knowledge of the boundary conditions and the measurement data are not required. The probabilistic framework inculcates this optimal control method in a Bayesian inference framework. A Markov chain Monte Carlo sampling method is applied to obtain the posterior probability density function, along with a radial basis function network for the numerical frugality of the samplings.
引用
收藏
页码:3145 / 3165
页数:21
相关论文
共 36 条
[1]   Overview of identification methods of mechanical parameters based on full-field measurements [J].
Avril, Stephane ;
Bonnet, Marc ;
Bretelle, Anne-Sophie ;
Grediac, Michel ;
Hild, Francois ;
Ienny, Patrick ;
Latourte, Felix ;
Lemosse, Didier ;
Pagano, Stephane ;
Pagnacco, Emmanuel ;
Pierron, Fabrice .
EXPERIMENTAL MECHANICS, 2008, 48 (04) :381-402
[2]   Updating models and their uncertainties. I: Bayesian statistical framework [J].
Beck, JL ;
Katafygiotis, LS .
JOURNAL OF ENGINEERING MECHANICS, 1998, 124 (04) :455-461
[3]   Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation [J].
Beck, JL ;
Au, SK .
JOURNAL OF ENGINEERING MECHANICS, 2002, 128 (04) :380-391
[4]   Robust identification of elastic properties using the Modified Constitutive Relation Error [J].
Ben Azzouna, Mouldi ;
Feissel, Pierre ;
Villon, Pierre .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 :196-218
[5]   Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review [J].
Bonyadi, Mohammad Reza ;
Michalewicz, Zbigniew .
EVOLUTIONARY COMPUTATION, 2017, 25 (01) :1-54
[6]  
Bowman A.W., 1997, Applied Smoothing Techniques For Data Analysis
[7]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[8]  
Buhmann M.D., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241
[9]  
Bui HD., 1993, INTRO INVERSE PROBLE
[10]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309