Combinatorial metabolic engineering enables the efficient production of ursolic acid and oleanolic acid in Saccharomyces cerevisiae

被引:22
|
作者
Jin, Ke [1 ,2 ]
Shi, Xun [3 ]
Liu, Jiaheng [1 ,2 ]
Yu, Wenwen [1 ,2 ]
Liu, Yanfeng [1 ,2 ]
Li, Jianghua [1 ,2 ]
Du, Guocheng [1 ,2 ]
Lv, Xueqin [1 ,2 ]
Liu, Long [1 ,2 ,4 ]
机构
[1] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Sci Ctr Future Foods, Wuxi 214122, Peoples R China
[3] Haoxiangni Hlth Food Co Ltd, Xinzheng 451100, Peoples R China
[4] Jiangnan Univ, Food Lab Zhongyuan, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Ursolic acid; Oleanolic acid; Acetyl-CoA; NADPH; Compartmentalization; BIOSYNTHESIS;
D O I
10.1016/j.biortech.2023.128819
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Ursolic acid (UA) and oleanolic acid (OA) have been demonstrated to have promising therapeutic potential as anticancer and bacteriostasis agents. Herein, via the heterologous expression and optimization of CrAS, CrAO, and AtCPR1, the de novo syntheses of UA and OA were achieved with titers of 7.4 and 3.0 mg/L, respectively. Subsequently, metabolic flux was redirected by increasing the cytosolic acetyl-CoA level and tuning the copy numbers of ERG1 and CrAS , thereby affording 483.4 mg/L UA and 163.8 mg/L OA. Furthermore, the lipid droplet compartmentalization of CrAO and AtCPR1 alongside the strengthening of the NADPH regeneration system increased the UA and OA titers to 692.3 and 253.4 mg/L in a shake flask and to 1132.9 and 433.9 mg/L in a 3-L fermenter, which is the highest UA titer reported to date. Overall, this study provides a reference for constructing microbial cell factories that can efficiently synthesize terpenoids.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Biosynthesis of Ursolic Acid and Oleanolic Acid in Saccharomyces cerevisiae
    Lu, Chunzhe
    Zhang, Chuanbo
    Zhao, Fanglong
    Li, Dashuai
    Lu, Wenyu
    AICHE JOURNAL, 2018, 64 (11) : 3794 - 3802
  • [2] Modular Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Production of Ursolic Acid
    Zhu, Yuan
    Yan, Xiaoguang
    Li, Weiguo
    Qiao, Jianjun
    Zhao, Guang-Rong
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2025, 73 (06) : 3580 - 3590
  • [3] Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae
    Liu, Tiantian
    Sun, Li
    Zhang, Cheng
    Liu, Yanfeng
    Li, Jianghua
    Du, Guocheng
    Lv, Xueqin
    Liu, Long
    BIORESOURCE TECHNOLOGY, 2023, 379
  • [4] Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae
    Guan, Ruobing
    Wang, Mengge
    Guan, Zhonghua
    Jin, Cheng-Yun
    Lin, Wei
    Ji, Xiao-Jun
    Wei, Yongjun
    Frontiers in Bioengineering and Biotechnology, 2020, 8
  • [5] Metabolic Engineering of Saccharomyces cerevisiae for Rosmarinic Acid Production
    Babaei, Mahsa
    Zamfir, Gheorghe M. Borja
    Chen, Xiao
    Christensen, Hanne Bjerre
    Kristensen, Mette
    Nielsen, Jens
    Borodina, Irina
    ACS SYNTHETIC BIOLOGY, 2020, 9 (08): : 1978 - 1988
  • [6] Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure l−(+)−lactic acid
    Nobuhiro Ishida
    Satoshi Saitoh
    Toru Ohnishi
    Kenro Tokuhiro
    Eiji Nagamori
    Katsuhiko Kitamoto
    Haruo Takahashi
    Applied Biochemistry and Biotechnology, 2006, 131 : 795 - 807
  • [7] Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer
    Chen, Na
    Wang, Jingya
    Zhao, Yunying
    Deng, Yu
    MICROBIAL CELL FACTORIES, 2018, 17
  • [8] Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae
    Guan, Ruobing
    Wang, Mengge
    Guan, Zhonghua
    Jin, Cheng-Yun
    Lin, Wei
    Ji, Xiao-Jun
    Wei, Yongjun
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [9] Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    Curran, Kathleen A.
    Leavitt, Johnm.
    Karim, AshtyS.
    Alper, Hal S.
    METABOLIC ENGINEERING, 2013, 15 : 55 - 66
  • [10] Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production
    John Blazeck
    Jarrett Miller
    Anny Pan
    Jon Gengler
    Clinton Holden
    Mariam Jamoussi
    Hal S. Alper
    Applied Microbiology and Biotechnology, 2014, 98 : 8155 - 8164