Compact Mid-Infrared Chalcogenide Glass Photonic Devices Based on Robust-Inverse Design

被引:11
作者
Lin, Xiaobin [1 ,2 ]
Wei, Maoliang [1 ,2 ]
Lei, Kunhao [1 ,2 ]
Yang, Songtao [1 ,2 ]
Ma, Hui [1 ,2 ]
Zhong, Chuyu [1 ,2 ]
Luo, Ye [3 ,4 ]
Li, Da [1 ,2 ]
Li, Junying [1 ,2 ]
Lin, Changgui [5 ]
Zhang, Wei [5 ]
Dai, Shixun [5 ]
Hu, Xiaoyong [6 ]
Li, Lan [3 ,4 ]
Li, Erping [1 ,2 ]
Lin, Hongtao [1 ,2 ,7 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Coll Informat Sci & Elect Engn, Key Lab Micronano Elect & Smart Syst Zhejiang Prov, Hangzhou 310027, Peoples R China
[3] Westlake Univ, Sch Engn, Key Lab Micro Nano Fabricat & Characterizat Zhejia, Hangzhou 310024, Peoples R China
[4] Westlake Inst Adv Study, Inst Adv Technol, Hangzhou 310024, Peoples R China
[5] Ningbo Univ, Lab Infrared Mat & Devices, Ningbo 315211, Peoples R China
[6] Peking Univ, Sch Phys, Frontiers Sci Ctr Nanooptoelect, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[7] Zhejiang Univ, MOE Frontier Sci Ctr Brain Sci & Brain Machine Int, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
chalcogenide glass photonics; coherent optical communication; inverse design; mid-infrared; SUPERCONTINUUM GENERATION; BEAM SPLITTER; BROAD-BAND; MU-M; OPTIMIZATION;
D O I
10.1002/lpor.202200445
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Mid-infrared (mid-IR) on-chip photonic devices have attracted increasing attention because of their potential applications in chemical and biological sensing and optical communications. In particular, chalcogenide glasses (ChGs) have long been regarded as promising materials for mid-IR integrated photonics, owing to their broad infrared transparency, high nonlinearity, and excellent processing capabilities. Here, an inverse design approach is introduced to ChG photonic device design with a new robust inverse design method. A high-performance mid-IR inverse design polarization beam splitter, waveguide polarizer, mode converter, and wavelength demultiplexer are demonstrated for the first time. They all have a footprint of only several micrometers. The robust inverse design method could improve the robustness of device performance against fabrication variations and would be a general approach for designing and optimizing miniaturized chalcogenide photonic devices.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Core-clad silver halide fibers with few modes and a broad transmission in the mid-infrared [J].
Shalem, S ;
Katzir, A .
OPTICS LETTERS, 2005, 30 (15) :1929-1931
[32]  
Shen B, 2015, NAT PHOTONICS, V9, P378, DOI [10.1038/NPHOTON.2015.80, 10.1038/nphoton.2015.80]
[33]   Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide [J].
Singh, Neetesh ;
Casas-Bedoya, Alvaro ;
Hudson, Darren D. ;
Read, Andrew ;
Magi, Eric ;
Eggleton, Benjamin J. .
OPTICS LETTERS, 2016, 41 (24) :5776-5779
[34]   Inverse Design and Demonstration of a Compact on-Chip Narrowband Three-Channel Wavelength Demultiplexer [J].
Su, Logan ;
Piggott, Alexander Y. ;
Sapra, Neil V. ;
Petykiewicz, Jan ;
Vuckovic, Jelena .
ACS PHOTONICS, 2018, 5 (02) :301-305
[35]   Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector [J].
Su, P. ;
Han, Z. ;
Kita, D. ;
Becla, P. ;
Lin, H. ;
Deckoff-Jones, S. ;
Richardson, K. ;
Kimerling, L. C. ;
Hu, J. ;
Agarwal, A. .
APPLIED PHYSICS LETTERS, 2019, 114 (05)
[36]   Light Emission from Self-Assembled and Laser-Crystallized Chalcogenide Metasurface [J].
Wang, Feifan ;
Wang, Zi ;
Mao, Dun ;
Chen, Mingkun ;
Li, Qiu ;
Kananen, Thomas ;
Fang, Dustin ;
Soman, Anishkumar ;
Hu, Xiaoyong ;
Arnold, Craig B. ;
Gu, Tingyi .
ADVANCED OPTICAL MATERIALS, 2020, 8 (08)
[37]   Inverse design of digital nanophotonic devices using the adjoint method [J].
Wang, Kaiyuan ;
Ren, Xinshu ;
Chang, Weijie ;
Lu, Longhui ;
Liu, Deming ;
Zhang, Minming .
PHOTONICS RESEARCH, 2020, 8 (04) :528-533
[38]   Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design [J].
Wang, Qian ;
Ho, Seng-Tiong .
IEEE PHOTONICS JOURNAL, 2010, 2 (01) :49-56
[39]   Experimental Demonstration of a High Efficiency Polarization Splitter Based on a One-Dimensional Grating With a Bragg Reflector Underneath [J].
Wang, Zhechao ;
Tang, Yongbo ;
Wosinski, Lech ;
He, Sailing .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (21) :1568-1570
[40]   High-Performance Waveguide-Integrated Bi2O2Se Photodetector for Si Photonic Integrated Circuits [J].
Wu, Jianghong ;
Wei, Maoliang ;
Mu, Jianglong ;
Ma, Hui ;
Zhong, Chuyu ;
Ye, Yuting ;
Sun, Chunlei ;
Tang, Bo ;
Wang, Lichun ;
Li, Junying ;
Xu, Xiaomin ;
Liu, Bilu ;
Li, Lan ;
Lin, Hongtao .
ACS NANO, 2021, 15 (10) :15982-15991