Potential Geographical Distribution of Lagerstroemia excelsa under Climate Change

被引:5
作者
Hao, Siwen [1 ,2 ]
Zhang, Donglin [3 ]
Wen, Yafeng [1 ,2 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Landscape Architecture, Changsha 410004, Peoples R China
[2] Hunan Big Data Engn Ctr Nat Protected Areas & Land, Changsha 410004, Peoples R China
[3] Univ Georgia, Dept Hort, Athens, GA 30602 USA
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 02期
关键词
crape myrtle; global warming; MaxEnt model; potential suitable area; sustainable utilization;
D O I
10.3390/agriculture14020191
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
As a popular ornamental plant and an effective species for controlling rocky desertification, the identification and protection of potential habitats of Lagerstroemia excelsa habitats hold significant importance. To gain a comprehensive understanding of the natural resources and growing conditions for L. excelsa, predictive modeling was employed to estimate the potential geographical distribution of the species during the Mid-Holocene (MH), the present, and the years 2050 and 2070. The projection was based on current occurrences, and we selected the relevant environmental attributes through the Pearson analysis and the Maximum Entropy Model (MaxEnt). The analysis revealed that temperature and precipitation are the primary environmental factors influencing L. excelsa distribution, with the Wuling Mountains identified as a center distribution hub for this species. The anticipated suitable area for L. excelsa is expected to experience marginal expansion under future climate scenarios. These results are invaluable for guiding the protection and sustainable utilization of L. excelsa in the face of climate change. Additionally, the data generated can be leveraged for enhanced introduction, breeding, selection, and cultivation of L. excelsa, taking into account the challenges posed by global warming.
引用
收藏
页数:14
相关论文
共 34 条
[1]   How will climate change affect future urban naturalistic herbaceous planting? The role of plant origin and fitness [J].
Alizadeh, B. ;
Hitchmough, J. D. .
URBAN FORESTRY & URBAN GREENING, 2020, 54
[2]   A review of urban landscape adaptation to the challenge of climate change [J].
Alizadeh, Behdad ;
Hitchmough, James .
INTERNATIONAL JOURNAL OF CLIMATE CHANGE STRATEGIES AND MANAGEMENT, 2019, 11 (02) :178-194
[3]   Biodiversity synthesis across the green branches of the tree of life [J].
Allen, Julie M. ;
Folk, Ryan A. ;
Soltis, Pamela S. ;
Soltis, Douglas E. ;
Guralnick, Robert P. .
NATURE PLANTS, 2019, 5 (01) :11-13
[4]   Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L. [J].
Almeida, Alice Maria ;
Martins, Maria Joao ;
Campagnolo, Manuel Lameiras ;
Fernandez, Paulo ;
Albuquerque, Teresa ;
Gerassis, Saki ;
Goncalves, Jose Carlos ;
Ribeiro, Maria Margarida .
SCIENTIFIC REPORTS, 2022, 12 (01)
[5]  
Bhadra P., 2022, Plant Perspectives to Global Climate Changes, DOI [10.1016/B978-0-323-85665-2.00004-2, DOI 10.1016/B978-0-323-85665-2.00004-2]
[6]  
Busby J. R., 1991, Plant Protection Quarterly, V6, P8
[7]   Prediction of wild pistachio ecological niche using machine learning models [J].
Damaneh, Javad Momeni ;
Ahmadi, Jalil ;
Rahmanian, Soroor ;
Sadeghi, Seyed Mohammad Moein ;
Nasiri, Vahid ;
Borz, Stelian Alexandru .
ECOLOGICAL INFORMATICS, 2022, 72
[8]  
EGOLF DONALD R., 1967, BAILEYA QUART J HORTICULT TAXONOMY, V15, P7
[9]   Predicting suitable habitats of Melia azedarach L. in China using data mining [J].
Feng, Lei ;
Tian, Xiangni ;
El-Kassaby, Yousry A. ;
Qiu, Jian ;
Feng, Ze ;
Sun, Jiejie ;
Wang, Guibin ;
Wang, Tongli .
SCIENTIFIC REPORTS, 2022, 12 (01)
[10]   Plant species richness and functional traits affect community stability after a flood event [J].
Fischer, Felicia M. ;
Wright, Alexandra J. ;
Eisenhauer, Nico ;
Ebeling, Anne ;
Roscher, Christiane ;
Wagg, Cameron ;
Weigelt, Alexandra ;
Weisser, Wolfgang W. ;
Pillar, Valerio D. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 371 (1694)