Identifying Influential Spatial Drivers of Forest Fires through Geographically and Temporally Weighted Regression Coupled with a Continuous Invasive Weed Optimization Algorithm

被引:2
作者
Pahlavani, Parham [1 ]
Raei, Amin [1 ]
Bigdeli, Behnaz [2 ]
Ghorbanzadeh, Omid [3 ,4 ]
机构
[1] Univ Tehran, Coll Engn, Ctr Excellence Geomat Engn Disaster Management, Sch Surveying & Geospatial Engn, Tehran 1439957131, Iran
[2] Shahrood Univ Technol, Sch Civil Engn, Shahrood 3619995161, Iran
[3] Univ Nat Resources & Life Sci, Inst Geomat, Peter Jordan Str 82, A-1190 Vienna, Austria
[4] Inst Adv Res Artificial Intelligence IARAI, Landstr Hauptstr 5, A-1030 Vienna, Austria
来源
FIRE-SWITZERLAND | 2024年 / 7卷 / 01期
关键词
forest fires; geographically and temporally weighted regression; Golestan forest; modified continuous invasive weed optimization algorithm; remote sensing; WILDFIRE; PATTERNS; SIMULATION; STATE; RISK;
D O I
10.3390/fire7010033
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Identifying the underlying factors derived from geospatial and remote sensing data that contribute to forest fires is of paramount importance. It aids experts in pinpointing areas and periods most susceptible to these incidents. In this study, we employ the geographically and temporally weighted regression (GTWR) method in conjunction with a refined continuous invasive weed optimization (CIWO) algorithm to assess certain spatially relevant drivers of forest fires, encompassing both biophysical and anthropogenic influences. Our proposed approach demonstrates theoretical utility in addressing the spatial regression problem by meticulously accounting for the autocorrelation and non-stationarity inherent in spatial data. We leverage tricube and Gaussian kernels to weight the GTWR for two distinct temporal datasets, yielding coefficients of determination (R2) amounting to 0.99 and 0.97, respectively. In contrast, traditional geographically weighted regression (GWR) using the tricube kernel achieved R2 values of 0.87 and 0.88, while the Gaussian kernel yielded R2 values of 0.8138 and 0.82 for the same datasets. This investigation underscores the substantial impact of both biophysical and anthropogenic factors on forest fires within the study areas.
引用
收藏
页数:21
相关论文
共 39 条
  • [1] Akhani H., 1999, Edinburgh Journal of Botany, V56, P1
  • [2] Akhani H., 1998, Plant biodiversity of Golestan National Park
  • [3] ARIF Muhammad., 2021, Journal of Robotics Autom, V5, P212, DOI [10.36959/673/372, DOI 10.36959/673/372]
  • [4] SPATIAL ANALYSIS OF FOREST FIRE OCCURRENCE IN THE STATE OF DURANGO
    Avila-Flores, D. Y.
    Pompa-Garcia, M.
    Vargas-Perez, E.
    [J]. REVISTA CHAPINGO SERIE CIENCIAS FORESTALES Y DEL AMBIENTE, 2010, 16 (02) : 253 - 260
  • [5] Driving Factors for Forest Fire Occurrence in Durango State of Mexico: A Geospatial Perspective
    Avila-Flores, Diana
    Pompa-Garcia, Marin
    Antonio-Nemiga, Xanat
    Rodriguez-Trejo, Dante A.
    Vargas-Perez, Eduardo
    Santillan-Perez, Javier
    [J]. CHINESE GEOGRAPHICAL SCIENCE, 2010, 20 (06) : 491 - 497
  • [6] Geographically weighted regression - modelling spatial non-stationarity
    Brunsdon, C
    Fotheringham, S
    Charlton, M
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1998, 47 : 431 - 443
  • [7] Numerical simulation of surface forest fire in Brazilian Amazon
    Bufacchi, Paulo
    Krieger, Guenther C.
    Mell, William
    Alvarado, Ernesto
    Santos, Jose Carlos
    Carvalho, Joao Andrade, Jr.
    [J]. FIRE SAFETY JOURNAL, 2016, 79 : 44 - 56
  • [8] Charlton M., 2009, Geographically Weighted Regression
  • [9] Mapping the probability of large fire occurrence in northern Arizona, USA
    Dickson, Brett G.
    Prather, John W.
    Xu, Yaguang
    Hampton, Haydee M.
    Aumack, Ethan N.
    Sisk, Thomas D.
    [J]. LANDSCAPE ECOLOGY, 2006, 21 (05) : 747 - 761
  • [10] Erten Esra, 2004, Forest fire risk zone mapping from satellite imagery and GIS: A case study. Geo-imagery bridging continents