MOMENTUM RAY TRANSFORMS AND A PARTIAL DATA INVERSE PROBLEM FOR A POLYHARMONIC OPERATOR

被引:6
作者
Bhattacharyya, Sombuddha [1 ]
Krishnan, Venkateswaran P. [2 ]
Sahoo, Suman K. [3 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Bhopal, India
[2] TIFR Ctr Applicable Math, Bangalore, Karnataka, India
[3] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
基金
欧洲研究理事会;
关键词
Calderon problem; perturbed polyharmonic operator; tensor tomography; momen-tum ray transforms; BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; CALDERON PROBLEM; TENSOR-FIELDS; PERTURBATION;
D O I
10.1137/22M1500617
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem involving the unique recovery of lower order anisotropic tensor perturbations of a polyharmonic operator in a bounded domain from the knowledge of the Dirichlet to Neumann map on a part of a boundary. The uniqueness proof relies on the inversion of generalized momentum ray transforms (MRT) for symmetric tensor fields, which we introduce for the first time to study Calderon-type inverse problems. The uniqueness result and the inversion formula we prove for generalized MRT could be of independent interest and we expect it to be applicable to other inverse problems for higher order operators involving tensor perturbations.
引用
收藏
页码:4000 / 4038
页数:39
相关论文
共 30 条
[21]  
Krupchyk K, 2014, T AM MATH SOC, V366, P95
[22]   Determining a first order perturbation of the biharmonic operator by partial boundary measurements [J].
Krupchyk, Katsiaryna ;
Lassas, Matti ;
Uhlmann, Gunther .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) :1781-1801
[23]   INJECTIVITY AND RANGE DESCRIPTION OF INTEGRAL MOMENT TRANSFORMS OVER m-TENSOR FIELDS IN Rn [J].
Mishra, Rohit Kumar ;
Sahoo, Suman Kumar .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) :253-278
[24]   Global uniqueness for a two-dimensional inverse boundary value problem [J].
Nachman, AI .
ANNALS OF MATHEMATICS, 1996, 143 (01) :71-96
[25]   Carleman estimates and inverse problems for Dirac operators [J].
Salo, Mikko ;
Tzou, Leo .
MATHEMATISCHE ANNALEN, 2009, 344 (01) :161-184
[26]  
Selvadurai A. P. S., 2000, Partial differential equations in mechanics 2. The biharmonic equation, Poisson's equation
[27]  
Sharafutdinov V, 1994, Inverse and Ill-Posed Problems
[28]  
SHARAFUTDINOV VA, 1986, DOKL AKAD NAUK SSSR+, V286, P305
[29]   A LINEARIZED INVERSE BOUNDARY-VALUE PROBLEM FOR MAXWELL EQUATIONS [J].
SOMERSALO, E ;
ISAACSON, D ;
CHENEY, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 42 (01) :123-136
[30]   A GLOBAL UNIQUENESS THEOREM FOR AN INVERSE BOUNDARY-VALUE PROBLEM [J].
SYLVESTER, J ;
UHLMANN, G .
ANNALS OF MATHEMATICS, 1987, 125 (01) :153-169