Initial boundary value problem of pseudo-parabolic Kirchhoff equations with logarithmic nonlinearity

被引:2
作者
Zhao, Qiuting [1 ]
Cao, Yang [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
blow-up; global existence; logarithmic nonlinearity; pseudo-parabolic Kirchhoff equation; BLOW-UP; GLOBAL EXISTENCE; P-LAPLACIAN; EVOLUTION-EQUATIONS; TIME; INSTABILITY; NONEXISTENCE; BEHAVIOR; SOLITONS;
D O I
10.1002/mma.9684
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial boundary value problem for a pseudo-parabolic Kirchhoff equation with logarithmic nonlinearity. Using the potential well method, we obtain a threshold result of global existence and finite-time blow-up for the weak solutions with initial energy J (u(0)) <= d . When the initial energy J (u0) > d , we find another criterion for the vanishing solution and blow-up solution. We also establish the decay rate of the global solution and estimate the life span of the blow-up solution. Meanwhile, we study the existence of the ground state solution to the corresponding stationary problem.
引用
收藏
页码:799 / 816
页数:18
相关论文
共 61 条
[1]   Global Nonexistence for Nonlinear Kirchhoff Systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :489-516
[2]   EXISTENCE AND UNIQUENESS OF MULTIDIMENSIONAL BSDEs AND OF SYSTEMS OF DEGENERATE PDEs WITH SUPERLINEAR GROWTH GENERATOR [J].
Bahlali, K. ;
Essaky, E. ;
Hassani, M. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (06) :4251-4288
[3]   INFLATIONARY MODELS WITH LOGARITHMIC POTENTIALS [J].
BARROW, JD ;
PARSONS, P .
PHYSICAL REVIEW D, 1995, 52 (10) :5576-5587
[4]  
Brezis H., 2010, Functional analysis, Sobolev Spaces and Partial Differential Equations
[5]   Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media [J].
Buljan, H ;
Siber, A ;
Soljacic, M ;
Schwartz, T ;
Segev, M ;
Christodoulides, DN .
PHYSICAL REVIEW E, 2003, 68 (03) :6
[6]   INITIAL BOUNDARY VALUE PROBLEM OF A CLASS OF MIXED PSEUDO-PARABOLIC KIRCHHOFF EQUATIONS [J].
Cao, Yang ;
Zhao, Qiuting .
ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06) :3833-3851
[7]   Asymptotic behavior of global solutions to a class of mixed pseudo-parabolic Kirchhoff equations [J].
Cao, Yang ;
Zhao, Qiuting .
APPLIED MATHEMATICS LETTERS, 2021, 118 (118)
[8]  
Cao Y, 2018, ELECTRON J DIFFER EQ
[9]   Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness [J].
Caraballo, Tomas ;
Herrera-Cobos, Marta ;
Marin-Rubio, Pedro .
NONLINEAR DYNAMICS, 2016, 84 (01) :35-50
[10]   DIGITAL REMOVAL OF RANDOM MEDIA IMAGE DEGRADATIONS BY SOLVING DIFFUSION EQUATION BACKWARDS IN TIME [J].
CARASSO, AS ;
SANDERSON, JG ;
HYMAN, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :344-367