Fabrication of Embedded Microfluidic Chips with Single Micron Resolution Using Two-Photon Lithography

被引:12
作者
Luitz, Manuel [1 ]
Kirpat Konak, Buesra M. [2 ,3 ]
Sherbaz, Ahmad [1 ,2 ,3 ]
Prediger, Richard [1 ]
Nekoonam, Niloofar [1 ]
Di Ventura, Barbara [2 ,3 ]
Kotz-Helmer, Frederik [1 ,4 ]
Rapp, Bastian E. [1 ,4 ,5 ]
机构
[1] Univ Freiburg, Dept Microsyst Engn IMTEK, Lab Proc Technol, NeptunLab, Georges Kohler Allee 103, D-79110 Freiburg, Germany
[2] Univ Freiburg, Fac Biol, Signalling Res Ctr BIOSS, Inst Biol 2, Schanzlestr 1, D-79104 Freiburg, Germany
[3] Univ Freiburg, Fac Biol, Signalling Res Ctr CIBS, Inst Biol 2, Schanzlestr 1, D-79104 Freiburg, Germany
[4] Univ Freiburg, Freiburg Mat Res Ctr FMF, Stefan Meier Str 21, D-79104 Freiburg, Germany
[5] Univ Freiburg, FIT Freiburg Ctr Interact Mat & Bioinspired Techno, Georges Kohler Allee 105, D-79110 Freiburg, Germany
关键词
deterministic lateral displacement; developing of sub 100 mu m channels; droplet generators; microfluidics; two-photon lithography; CROSS-SECTION; POLYMERIZATION; STEREOLITHOGRAPHY; OPTIMIZATION; ABSORPTION; SEPARATION; SYSTEMS; DEVICE;
D O I
10.1002/admt.202300667
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-photon lithography (TPL) is an advanced high-resolution additive manufacturing technique for objects with feature sizes between 100 nanometers to tens of micrometers and an overall footprint of up to hundreds of micrometers. With recent advances in the TPL technique, writing speeds are becoming faster, rendering the method feasible to print high-resolution microfluidic chips with a footprint in the centimeter range within a reasonable time frame. In this work, a process flow to fabricate embedded microfluidic chips with channel diameters down to 30 mu m is developed. To address the particular difficulty of washing the embedded channels free of uncured material, introduces a developing scheme based on a 3D printed chip-to-world-interface to connect the chips to a pressure-driven pump. This setup is leakage-free up to a pressure of 6.9 bar for faster and safer development of embedded microfluidic devices. It manufactures meander chips with channel lengths up to 20 cm, droplet generator chips, and cell sorting chips based on deterministic lateral displacement with pillar diameters of 30 mu m and pillar spacing of 4 mu m. TPL of microfluidic chips will enable rapid manufacturing of novel designs, significantly reducing concept-to-chip times with high resolution in a reasonable amount of time.
引用
收藏
页数:8
相关论文
共 51 条
[1]   3D microfluidics via cyclic olefin polymer-based in situ direct laser writing [J].
Alsharhan, Abdullah T. ;
Acevedo, Ruben ;
Warren, Roseanne ;
Sochol, Ryan D. .
LAB ON A CHIP, 2019, 19 (17) :2799-2810
[2]   Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip [J].
Amato, Lorenzo ;
Gu, Yu ;
Bellini, Nicola ;
Eaton, Shane M. ;
Cerullo, Giulio ;
Osellame, Roberto .
LAB ON A CHIP, 2012, 12 (06) :1135-1142
[3]   Polymerization Photoinitiators with Near-Resonance Enhanced Two-Photon Absorption Cross-Section: Toward High-Resolution Photoresist with Improved Sensitivity [J].
Arnoux, Caroline ;
Konishi, Tatsuki ;
Van Elslande, Emma ;
Poutougnigni, Eric-Aime ;
Mulatier, Jean-Christophe ;
Khrouz, Lhoussain ;
Bucher, Christophe ;
Dumont, Elise ;
Kamada, Kenji ;
Andraud, Chantal ;
Baldeck, Patrice ;
Banyasz, Akos ;
Monnereau, Cyrille .
MACROMOLECULES, 2020, 53 (21) :9264-9278
[4]   Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices [J].
Au, Anthony K. ;
Lee, Wonjae ;
Folch, Albert .
LAB ON A CHIP, 2014, 14 (07) :1294-1301
[5]   Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices [J].
Beauchamp, Michael J. ;
Nordin, Gregory P. ;
Woolley, Adam T. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2017, 409 (18) :4311-4319
[6]   Far infrared-assisted embossing and bonding of poly(methyl methacrylate) microfluidic chips [J].
Chen, Qiwen ;
Zhang, Luyan ;
Chen, Gang .
RSC ADVANCES, 2014, 4 (99) :56440-56444
[7]   A Polystyrene Photoresin for Direct Lithography of Microfluidic Chips [J].
Corredor, Santiago Franco ;
Mayoussi, Fadoua ;
Luitz, Manuel ;
Kick, Andrea ;
Goralczyk, Andreas ;
Boecherer, David ;
Vera, Grace ;
Helmer, Dorothea ;
Kotz-Helmer, Frederik ;
Rapp, Bastian E. .
ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (10)
[8]   Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis [J].
Dhouib, Kaouthar ;
Malek, Chantal Khan ;
Pfleging, Wilhelm ;
Gauthier-Manuel, Bernard ;
Duffait, Roland ;
Thuillier, Gael ;
Ferrigno, Rosaria ;
Jacquamet, Lilian ;
Ohana, Jeremy ;
Ferrer, Jean-Luc ;
Theobald-Dietrich, Anne ;
Giege, Richard ;
Lorber, Bernard ;
Sauter, Claude .
LAB ON A CHIP, 2009, 9 (10) :1412-1421
[9]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[10]   An integrated microfabricated cell sorter [J].
Fu, AY ;
Chou, HP ;
Spence, C ;
Arnold, FH ;
Quake, SR .
ANALYTICAL CHEMISTRY, 2002, 74 (11) :2451-2457