Process Robustness in Lipid Nanoparticle Production: A Comparison of Microfluidic and Turbulent Jet Mixing

被引:24
作者
Laramy, Matthew N. O'Brien N. [1 ]
Costa, Antonio P. [2 ]
Cebrero, Yareli Maciel [1 ]
Joseph, Johnson [2 ]
Sarode, Apoorva [1 ]
Zang, Nanzhi [1 ]
Kim, Lee Joon [3 ]
Hofmann, Kate [1 ]
Wang, Shirley [1 ]
Goyon, Alexandre [1 ]
Koenig, Stefan G. [1 ]
Hammel, Michal [3 ]
Hura, Greg L. [3 ,4 ]
机构
[1] Genentech Inc, Genentech Res & Early Dev, Synthet Mol Pharmaceut Sci, 1 DNA Way, South San Francisco, CA 94060 USA
[2] DIANT Pharm Inc, 130 Utopia Rd, Manchester, CT 06042 USA
[3] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
[4] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
关键词
lipid nanoparticle; nucleic acid; antisenseoligonucleotide; messenger RNA; turbulent jet mixer; microfluidic mixer; MESSENGER-RNA; CATIONIC LIPIDS; IN-VIVO; DESIGN; SIZE; FORMULATIONS; POTENCY;
D O I
10.1021/acs.molpharmaceut.3c00390
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The recent clinical and commercial success of lipid nanoparticles(LNPs) for nucleic acid delivery has incentivized the developmentof new technologies to manufacture LNPs. As new technologies emerge,researchers must determine which technologies to assess and how toperform comparative evaluations. In this article, we use a quality-by-designapproach to systematically investigate how the mixer technology usedto form LNPs influences LNPstructure. Specifically, a coaxial turbulentjet mixer and a staggered herringbone microfluidic mixer were systematicallycompared via matched formulation and process conditions. A full-factorialdesign-of-experiments study with three factors and three levels wasexecuted for each mixer to compare process robustness in the productionof antisense oligonucleotide (ASO) LNPs. ASO-LNPs generated with thecoaxial turbulent jet mixer were consistently smaller, had a narrowerparticle size distribution, and had a higher ASO encapsulation ascompared to the microfluidic mixer, but had a greater variation ininternal structure with less ordered cores. A subset of the studywas replicated for mRNA-LNPs with comparable trends in particle sizeand encapsulation, but more frequent bleb features for LNPs producedby the coaxial turbulent jet mixer. The study design used here providesa road map for how researchers may compare different mixer technologies(or process changes more broadly) and how such studies can informprocess robustness and manufacturing control strategies.
引用
收藏
页码:4285 / 4296
页数:12
相关论文
共 43 条
[1]   The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J].
Akinc, Akin ;
Maier, Martin A. ;
Manoharan, Muthiah ;
Fitzgerald, Kevin ;
Jayaraman, Muthusamy ;
Barros, Scott ;
Ansell, Steven ;
Du, Xinyao ;
Hope, Michael J. ;
Madden, Thomas D. ;
Mui, Barbara L. ;
Semple, Sean C. ;
Tam, Ying K. ;
Ciufolini, Marco ;
Witzigmann, Dominik ;
Kulkarni, Jayesh A. ;
van der Meel, Roy ;
Cullis, Pieter R. .
NATURE NANOTECHNOLOGY, 2019, 14 (12) :1084-1087
[2]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[3]   Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA [J].
Belliveau, Nathan M. ;
Huft, Jens ;
Lin, Paulo J. C. ;
Chen, Sam ;
Leung, Alex K. K. ;
Leaver, Timothy J. ;
Wild, Andre W. ;
Lee, Justin B. ;
Taylor, Robert J. ;
Tam, Ying K. ;
Hansen, Carl L. ;
Cullis, Pieter R. .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2012, 1 :e37
[4]   Encapsulation state of messenger RNA inside lipid nanoparticles [J].
Brader, Mark L. ;
Williams, Sean J. ;
Banks, Jessica M. ;
Hui, Wong H. ;
Zhou, Z. Hong ;
Jin, Lin .
BIOPHYSICAL JOURNAL, 2021, 120 (14) :2766-2770
[5]   Micromixing Within Microfluidic Devices [J].
Capretto, Lorenzo ;
Cheng, Wei ;
Hill, Martyn ;
Zhang, Xunli .
MICROFLUIDICS: TECHNOLOGIES AND APPLICATIONS, 2011, 304 :27-68
[6]   Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA [J].
Chen, Sam ;
Tam, Yuen Yi C. ;
Lin, Paulo J. C. ;
Sung, Molly M. H. ;
Tam, Ying K. ;
Cullis, Pieter R. .
JOURNAL OF CONTROLLED RELEASE, 2016, 235 :236-244
[7]   Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing [J].
Cheng, Qiang ;
Wei, Tuo ;
Farbiak, Lukas ;
Johnson, Lindsay T. ;
Dilliard, Sean A. ;
Siegwart, Daniel J. .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :313-+
[8]   Liposome Formation Using a Coaxial Turbulent Jet in Co-Flow [J].
Costa, Antonio P. ;
Xu, Xiaoming ;
Khan, Mansoor A. ;
Burgess, Diane J. .
PHARMACEUTICAL RESEARCH, 2016, 33 (02) :404-416
[9]   Development of a high-throughput platform for screening lipid nanoparticles for mRNA delivery [J].
Cui, Lili ;
Pereira, Sara ;
Sonzini, Silvia ;
van Pelt, Sally ;
Romanelli, Steven M. ;
Liang, Lihuan ;
Ulkoski, David ;
Krishnamurthy, Venkata R. ;
Brannigan, Emily ;
Brankin, Christopher ;
Desai, Arpan S. .
NANOSCALE, 2022, 14 (04) :1480-1491
[10]   Lipid Nanoparticle Systems for Enabling Gene Therapies [J].
Cullis, Pieter R. ;
Hope, Michael J. .
MOLECULAR THERAPY, 2017, 25 (07) :1467-1475