Domain-invariant information aggregation for domain generalization semantic segmentation

被引:17
|
作者
Liao, Muxin [1 ,4 ]
Tian, Shishun [1 ,4 ]
Zhang, Yuhang [1 ,4 ]
Hua, Guoguang [1 ,4 ]
Zou, Wenbin [1 ,2 ,3 ,4 ,5 ]
Li, Xia [1 ,4 ]
机构
[1] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Proc,Shenzh, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain generalization; Edge; Semantic layout; Semantic segmentation; LEARNING NETWORK; IMAGE;
D O I
10.1016/j.neucom.2023.126273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization semantic segmentation methods aim to generalize well on out-of-distribution scenes, which is crucial for real-world applications. Recent works focus on learning domain-invariant content information by using normalization, whitening, and domain randomization to remove style information. Although these methods improve the performance on out-of-distribution scenes to some extent, they ignore the learning of edge and semantic layout information. The edge information describes the shape and boundary of an object and the semantic layout information contains the common sense priors (e.g., the spatial position of objects). For one thing, we observe that the shape of the same object with different styles is domain-invariant in the edge map. For another, we observe that the common sense priors in the semantic layout information of different scenes are domain-invariant. Motivated by these observations, a novel approach is proposed for domain generalization semantic segmentation by using the edge and semantic layout information. Specifically, the proposed approach contains the edge reconstruction module (ERM), the semantic layout reconstruction module (SLRM), and the triple informa-tion aggregation module (TIAM). The ERM and SLRM aim to explicitly learn the edge and semantic layout information. The TIAM aggregates the edge and semantic layout information to refine the content infor-mation. Extensive experiments demonstrate that our approach achieves superior performance over cur-rent approaches on domain generalization segmentation tasks. The source code will be released at https://github.com/seabearlmx/DIIA. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Learning generalized visual relations for domain generalization semantic segmentation
    Li, Zijun
    Liao, Muxin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [42] Empirical Generalization Study: Unsupervised Domain Adaptation vs. Domain Generalization Methods for Semantic Segmentation in the Wild
    Piva, Fabrizio J.
    de Geus, Daan
    Dubbelman, Gijs
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 499 - 508
  • [43] DIEONet: Domain-Invariant Information Extraction and Optimization Network for Visual Place Recognition
    Hou, Shaoqi
    Qin, Zebang
    Wu, Chenyu
    Yin, Guangqiang
    Wang, Xinzhong
    Wang, Zhiguo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 5019 - 5033
  • [44] Improving Generalization of Multi-agent Reinforcement Learning Through Domain-Invariant Feature Extraction
    Xu, Yifan
    Pu, Zhiqiang
    Cai, Qiang
    Li, Feimo
    Chai, Xinghua
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 49 - 62
  • [45] Learning Domain-Invariant Representations of Histological Images
    Lafarge, Maxime W.
    Pluim, Josien P. W.
    Eppenhof, Koen A. J.
    Veta, Mitko
    FRONTIERS IN MEDICINE, 2019, 6
  • [46] Learning Domain-Invariant and Discriminative Features for Homogeneous Unsupervised Domain Adaptation
    ZHANG Yun
    WANG Nianbin
    CAI Shaobin
    ChineseJournalofElectronics, 2020, 29 (06) : 1119 - 1125
  • [47] Domain-invariant Graph for Adaptive Semi-supervised Domain Adaptation
    Li, Jinfeng
    Liu, Weifeng
    Zhou, Yicong
    Yu, Jun
    Tao, Dapeng
    Xu, Changsheng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (03)
  • [48] Domain-Invariant Feature Distillation for Cross-Domain Sentiment Classification
    Hu, Mengting
    Wu, Yike
    Zhao, Shiwan
    Guo, Honglei
    Cheng, Renhong
    Su, Zhong
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 5559 - 5568
  • [49] DOMAIN-INVARIANT REGION PROPOSAL NETWORK FOR CROSS-DOMAIN DETECTION
    Yang, Xuebin
    Wan, Shouhong
    Jin, Peiquan
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [50] Learning Domain-Invariant Subspace Using Domain Features and Independence Maximization
    Yan, Ke
    Kou, Lu
    Zhang, David
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (01) : 288 - 299