Domain-invariant information aggregation for domain generalization semantic segmentation

被引:18
|
作者
Liao, Muxin [1 ,4 ]
Tian, Shishun [1 ,4 ]
Zhang, Yuhang [1 ,4 ]
Hua, Guoguang [1 ,4 ]
Zou, Wenbin [1 ,2 ,3 ,4 ,5 ]
Li, Xia [1 ,4 ]
机构
[1] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Proc,Shenzh, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain generalization; Edge; Semantic layout; Semantic segmentation; LEARNING NETWORK; IMAGE;
D O I
10.1016/j.neucom.2023.126273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization semantic segmentation methods aim to generalize well on out-of-distribution scenes, which is crucial for real-world applications. Recent works focus on learning domain-invariant content information by using normalization, whitening, and domain randomization to remove style information. Although these methods improve the performance on out-of-distribution scenes to some extent, they ignore the learning of edge and semantic layout information. The edge information describes the shape and boundary of an object and the semantic layout information contains the common sense priors (e.g., the spatial position of objects). For one thing, we observe that the shape of the same object with different styles is domain-invariant in the edge map. For another, we observe that the common sense priors in the semantic layout information of different scenes are domain-invariant. Motivated by these observations, a novel approach is proposed for domain generalization semantic segmentation by using the edge and semantic layout information. Specifically, the proposed approach contains the edge reconstruction module (ERM), the semantic layout reconstruction module (SLRM), and the triple informa-tion aggregation module (TIAM). The ERM and SLRM aim to explicitly learn the edge and semantic layout information. The TIAM aggregates the edge and semantic layout information to refine the content infor-mation. Extensive experiments demonstrate that our approach achieves superior performance over cur-rent approaches on domain generalization segmentation tasks. The source code will be released at https://github.com/seabearlmx/DIIA. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Partial Domain Adaptation on Semantic Segmentation
    Tian, Yingjie
    Zhu, Siyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3798 - 3809
  • [42] Calibration-Based Multi-Prototype Contrastive Learning for Domain Generalization Semantic Segmentation in Traffic Scenes
    Liao, Muxin
    Tian, Shishun
    Zhang, Yuhang
    Hua, Guoguang
    Zou, Wenbin
    Li, Xia
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (12) : 20985 - 21001
  • [43] DOMAIN INVARIANT REGULARIZATION BY DISENTANGLING CONTENT AND STYLE FEATURES FOR VISUAL DOMAIN GENERALIZATION
    Gholami, Behnam
    El-Khamy, Mostafa
    Song, Kee-Bong
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1525 - 1529
  • [44] Domain Generalization for Robust MS Lesion Segmentation
    Zhang, Huahong
    Li, Hao
    Larson, Kathleen
    Hett, Kilian
    Oguz, Ipek
    MEDICAL IMAGING 2023, 2023, 12464
  • [45] Dynamic domain generalization for medical image segmentation
    Cheng, Zhiming
    Liu, Mingxia
    Yan, Chenggang
    Wang, Shuai
    NEURAL NETWORKS, 2025, 184
  • [46] Inter-Class and Inter-Domain Semantic Augmentation for Domain Generalization
    Wang, Mengzhu
    Liu, Yuehua
    Yuan, Jianlong
    Wang, Shanshan
    Wang, Zhibin
    Wang, Wei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1338 - 1347
  • [47] Kill Two Birds with One Stone: Domain Generalization for Semantic Segmentation via Network Pruning
    Luo, Yawei
    Liu, Ping
    Yang, Yi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (01) : 335 - 352
  • [48] Exploring High-Correlation Source Domain Information for Multi-Source Domain Adaptation in Semantic Segmentation
    Cai, Yuxiang
    Xi, Meng
    Shang, Yongheng
    Yin, Jianwei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2148 - 2158
  • [49] Adaptive Refining-Aggregation-Separation Framework for Unsupervised Domain Adaptation Semantic Segmentation
    Cao, Yihong
    Zhang, Hui
    Lu, Xiao
    Chen, Yurong
    Xiao, Zheng
    Wang, Yaonan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 3822 - 3832
  • [50] Meta-learning the invariant representation for domain generalization
    Jia, Chen
    Zhang, Yue
    MACHINE LEARNING, 2024, 113 (04) : 1661 - 1681