Domain-invariant information aggregation for domain generalization semantic segmentation

被引:18
|
作者
Liao, Muxin [1 ,4 ]
Tian, Shishun [1 ,4 ]
Zhang, Yuhang [1 ,4 ]
Hua, Guoguang [1 ,4 ]
Zou, Wenbin [1 ,2 ,3 ,4 ,5 ]
Li, Xia [1 ,4 ]
机构
[1] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Proc,Shenzh, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain generalization; Edge; Semantic layout; Semantic segmentation; LEARNING NETWORK; IMAGE;
D O I
10.1016/j.neucom.2023.126273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization semantic segmentation methods aim to generalize well on out-of-distribution scenes, which is crucial for real-world applications. Recent works focus on learning domain-invariant content information by using normalization, whitening, and domain randomization to remove style information. Although these methods improve the performance on out-of-distribution scenes to some extent, they ignore the learning of edge and semantic layout information. The edge information describes the shape and boundary of an object and the semantic layout information contains the common sense priors (e.g., the spatial position of objects). For one thing, we observe that the shape of the same object with different styles is domain-invariant in the edge map. For another, we observe that the common sense priors in the semantic layout information of different scenes are domain-invariant. Motivated by these observations, a novel approach is proposed for domain generalization semantic segmentation by using the edge and semantic layout information. Specifically, the proposed approach contains the edge reconstruction module (ERM), the semantic layout reconstruction module (SLRM), and the triple informa-tion aggregation module (TIAM). The ERM and SLRM aim to explicitly learn the edge and semantic layout information. The TIAM aggregates the edge and semantic layout information to refine the content infor-mation. Extensive experiments demonstrate that our approach achieves superior performance over cur-rent approaches on domain generalization segmentation tasks. The source code will be released at https://github.com/seabearlmx/DIIA. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Unsupervised cross domain semantic segmentation with mutual refinement and information distillation
    Ren, Dexin
    Wang, Shidong
    Zhang, Zheng
    Yang, Wankou
    Ren, Mingwu
    Zhang, Haofeng
    NEUROCOMPUTING, 2024, 586
  • [32] MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain Generalization
    Bi, Yuan
    Jiang, Zhongliang
    Clarenbach, Ricarda
    Ghotbi, Reza
    Karlas, Angelos
    Navab, Nassir
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 130 - 140
  • [33] A Mutual Information Domain Adaptation Network for Remotely Sensed Semantic Segmentation
    Chen, Hongyu
    Zhang, Hongyan
    Yang, Guangyi
    Li, Shengyang
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Hierarchical Invariant Learning for Domain Generalization Recommendation
    Zhang, Zeyu
    Gao, Heyang
    Yang, Hao
    Chen, Xu
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3470 - 3479
  • [35] Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation
    Liao, Muxin
    Tian, Shishun
    Zhang, Yuhang
    Hua, Guoguang
    Zou, Wenbin
    Li, Xia
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 14917 - 14931
  • [36] DAT: DOMAIN ADAPTIVE TRANSFORMER FOR DOMAIN ADAPTIVE SEMANTIC SEGMENTATION
    Park, Jinyoung
    Son, Minseok
    Lee, Sumin
    Kim, Changick
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4183 - 4187
  • [37] Enhancing Domain-Invariant Parts for Generalized Zero-Shot Learning
    Zhang, Yang
    Feng, Songhe
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6283 - 6291
  • [38] ContrastSense: Domain-invariant Contrastive Learning for In-the-Wild Wearable Sensing
    Dai, Gaole
    Xu, Huatao
    Yoon, Hyungun
    Li, Mo
    Tan, Rui
    Lee, Sung-Ju
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (04):
  • [39] Invariant semantic domain generalization shuffle network for cross-scene hyperspectral image classification
    Gao, Jingpeng
    Ji, Xiangyu
    Ye, Fang
    Chen, Geng
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 273
  • [40] Benchmarking domain adaptation for semantic segmentation
    Ahmed, Masud
    Hasan, Zahid
    Khan, Naima
    Roy, Nirmalya
    Purushotham, Sanjay
    Gangopadhyay, Aryya
    You, Suya
    UNMANNED SYSTEMS TECHNOLOGY XXIV, 2022, 12124