Domain-invariant information aggregation for domain generalization semantic segmentation

被引:17
|
作者
Liao, Muxin [1 ,4 ]
Tian, Shishun [1 ,4 ]
Zhang, Yuhang [1 ,4 ]
Hua, Guoguang [1 ,4 ]
Zou, Wenbin [1 ,2 ,3 ,4 ,5 ]
Li, Xia [1 ,4 ]
机构
[1] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Proc,Shenzh, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain generalization; Edge; Semantic layout; Semantic segmentation; LEARNING NETWORK; IMAGE;
D O I
10.1016/j.neucom.2023.126273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization semantic segmentation methods aim to generalize well on out-of-distribution scenes, which is crucial for real-world applications. Recent works focus on learning domain-invariant content information by using normalization, whitening, and domain randomization to remove style information. Although these methods improve the performance on out-of-distribution scenes to some extent, they ignore the learning of edge and semantic layout information. The edge information describes the shape and boundary of an object and the semantic layout information contains the common sense priors (e.g., the spatial position of objects). For one thing, we observe that the shape of the same object with different styles is domain-invariant in the edge map. For another, we observe that the common sense priors in the semantic layout information of different scenes are domain-invariant. Motivated by these observations, a novel approach is proposed for domain generalization semantic segmentation by using the edge and semantic layout information. Specifically, the proposed approach contains the edge reconstruction module (ERM), the semantic layout reconstruction module (SLRM), and the triple informa-tion aggregation module (TIAM). The ERM and SLRM aim to explicitly learn the edge and semantic layout information. The TIAM aggregates the edge and semantic layout information to refine the content infor-mation. Extensive experiments demonstrate that our approach achieves superior performance over cur-rent approaches on domain generalization segmentation tasks. The source code will be released at https://github.com/seabearlmx/DIIA. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Domain-Invariant Task Optimization for Cross-domain Recommendation
    Liu, Dou
    Hao, Qingbo
    Xiao, Yingyuan
    Zheng, Wenguang
    Wang, Jinsong
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT III, 2024, 14449 : 488 - 499
  • [32] Exploring Domain-Invariant Parameters for Source Free Domain Adaptation
    Wang, Fan
    Han, Zhongyi
    Gong, Yongshun
    Yin, Yilong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 7141 - 7150
  • [33] Gradient-aware domain-invariant learning for domain generalizationGradient-Aware Domain-Invariant Learning for Domain GeneralizationF. Hou et al.
    Feng Hou
    Yao Zhang
    Yang Liu
    Jin Yuan
    Cheng Zhong
    Yang Zhang
    Zhongchao Shi
    Jianping Fan
    Zhiqiang He
    Multimedia Systems, 2025, 31 (1)
  • [34] ATTENTIVE ADVERSARIAL LEARNING FOR DOMAIN-INVARIANT TRAINING
    Meng, Zhong
    Li, Jinyu
    Gong, Yifan
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6740 - 6744
  • [35] Domain-invariant feature fusion networks for semi-supervised generalization fault diagnosis
    Ren, He
    Wang, Jun
    Huang, Weiguo
    Jiang, Xingxing
    Zhu, Zhongkui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [36] Exploring Implicit Domain-Invariant Features for Domain Adaptive Object Detection
    Lang, Qinghai
    Zhang, Lei
    Shi, Wenxu
    Chen, Weijie
    Pu, Shiliang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (04) : 1816 - 1826
  • [37] LEARNING DOMAIN-INVARIANT TRANSFORMATION FOR SPEAKER VERIFICATION
    Zhang, Hanyi
    Wang, Longbiao
    Lee, Kong Aik
    Liu, Meng
    Dang, Jianwu
    Chen, Hui
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 7177 - 7181
  • [38] Domain-Invariant Latent Representation Discovers Roles
    Kikuta, Shumpei
    Toriumi, Fujio
    Nishiguchi, Mao
    Fukuma, Tomoki
    Nishida, Takanori
    Usui, Shohei
    COMPLEX NETWORKS AND THEIR APPLICATIONS VIII, VOL 1, 2020, 881 : 834 - 844
  • [39] ADIR: Advanced domain-invariant representation via decoupling learning and information bottleneck
    Zhong, Yangyang
    Yan, Yunfeng
    Luo, Pengxin
    Zhou, Yuhao
    Qi, Donglian
    IET IMAGE PROCESSING, 2024, 18 (09) : 2506 - 2520
  • [40] Adversarial Domain-Invariant Generalization: A Generic Domain-Regressive Framework for Bearing Fault Diagnosis Under Unseen Conditions
    Chen, Liang
    Li, Qi
    Shen, Changqing
    Zhu, Jun
    Wang, Dong
    Xia, Min
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1790 - 1800