Domain-invariant information aggregation for domain generalization semantic segmentation

被引:18
|
作者
Liao, Muxin [1 ,4 ]
Tian, Shishun [1 ,4 ]
Zhang, Yuhang [1 ,4 ]
Hua, Guoguang [1 ,4 ]
Zou, Wenbin [1 ,2 ,3 ,4 ,5 ]
Li, Xia [1 ,4 ]
机构
[1] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Proc,Shenzh, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain generalization; Edge; Semantic layout; Semantic segmentation; LEARNING NETWORK; IMAGE;
D O I
10.1016/j.neucom.2023.126273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization semantic segmentation methods aim to generalize well on out-of-distribution scenes, which is crucial for real-world applications. Recent works focus on learning domain-invariant content information by using normalization, whitening, and domain randomization to remove style information. Although these methods improve the performance on out-of-distribution scenes to some extent, they ignore the learning of edge and semantic layout information. The edge information describes the shape and boundary of an object and the semantic layout information contains the common sense priors (e.g., the spatial position of objects). For one thing, we observe that the shape of the same object with different styles is domain-invariant in the edge map. For another, we observe that the common sense priors in the semantic layout information of different scenes are domain-invariant. Motivated by these observations, a novel approach is proposed for domain generalization semantic segmentation by using the edge and semantic layout information. Specifically, the proposed approach contains the edge reconstruction module (ERM), the semantic layout reconstruction module (SLRM), and the triple informa-tion aggregation module (TIAM). The ERM and SLRM aim to explicitly learn the edge and semantic layout information. The TIAM aggregates the edge and semantic layout information to refine the content infor-mation. Extensive experiments demonstrate that our approach achieves superior performance over cur-rent approaches on domain generalization segmentation tasks. The source code will be released at https://github.com/seabearlmx/DIIA. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Domain-Invariant Prototypes for Semantic Segmentation
    Yang, Zhengeng
    Yu, Hongshan
    Sun, Wei
    Cheng, Li
    Mian, Ajmal
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7614 - 7627
  • [2] Gradient-aware domain-invariant learning for domain generalization
    Hou, Feng
    Zhang, Yao
    Liu, Yang
    Yuan, Jin
    Zhong, Cheng
    Zhang, Yang
    Shi, Zhongchao
    Fan, Jianping
    He, Zhiqiang
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [3] Learning Domain-Invariant Representations from Text for Domain Generalization
    Zhang, Huihuang
    Hu, Haigen
    Chen, Qi
    Zhou, Qianwei
    Jiang, Mingfeng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 118 - 129
  • [4] Domain generalization for semantic segmentation: a survey
    Rafi, Taki Hasan
    Mahjabin, Ratul
    Ghosh, Emon
    Ko, Young-Woong
    Lee, Jeong-Gun
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (09)
  • [5] Knowledge Distillation-Based Domain-Invariant Representation Learning for Domain Generalization
    Niu, Ziwei
    Yuan, Junkun
    Ma, Xu
    Xu, Yingying
    Liu, Jing
    Chen, Yen-Wei
    Tong, Ruofeng
    Lin, Lanfen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 245 - 255
  • [6] March on Data Imperfections: Domain Division and Domain Generalization for Semantic Segmentation
    Xu, Hai
    Xie, Hongtao
    Zha, Zheng-Jun
    Liu, Sun-ao
    Zhang, Yongdong
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3044 - 3053
  • [7] DALSCLIP: Domain aggregation via learning stronger domain-invariant features for CLIP
    Zhang, Yuewen
    Wang, Jiuhang
    Tang, Hongying
    Qin, Ronghua
    IMAGE AND VISION COMPUTING, 2025, 154
  • [8] Domain Generalization for Time-Series Forecasting via Extended Domain-Invariant Representations
    Shi, Yunchuan
    Li, Wei
    Zomaya, Albert Y.
    2024 IEEE ANNUAL CONGRESS ON ARTIFICIAL INTELLIGENCE OF THING, AIOT 2024, 2024, : 110 - 116
  • [9] Concept-guided domain generalization for semantic segmentation
    Liao, Muxin
    Li, Wei
    Yin, Chengle
    Jin, Yuling
    Peng, Yingqiong
    PATTERN RECOGNITION, 2025, 164
  • [10] Class-discriminative domain generalization for semantic segmentation
    Liao, Muxin
    Tian, Shishun
    Zhang, Yuhang
    Hua, Guoguang
    You, Rong
    Zou, Wenbin
    Li, Xia
    IMAGE AND VISION COMPUTING, 2025, 154