Synergistic effect of Z-scheme and oxygen vacancy of CeO2/WO3 heterojunction for enhanced CO2 reduction activity

被引:27
作者
Yaseen, Maria [1 ]
Jiang, Haopeng [1 ]
Li, Jinhe [1 ]
Yu, Xiaohui [1 ]
Ahmad, M. Ashfaq [2 ]
Ali, Rai Nauman [1 ]
Wang, Lele [1 ]
Yang, Juan [1 ]
Liu, Qinqin [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] COMSATS Univ Islamabad, Dept Phys, Lahore Campus, Lahore, Pakistan
基金
中国国家自然科学基金;
关键词
CO2; reduction; Cerium oxide; Tungsten oxide; Heterojunction; Z-scheme; GLOBAL ENERGY; STATES; PHOTOREDUCTION; PHOTOCATALYST; DEGRADATION; VERSATILE; OXIDE;
D O I
10.1016/j.apsusc.2023.157360
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic CO2 reduction shows great prospects in producing clean energy and solving environmental pollution. However, the activity of traditional photocatalysts is confined by poor carrier separation. In this paper, cerium oxide (CeO2) and tungsten oxide (WO3) were combined by an electrostatic self-assembly method to form a CeO2/WO3 Z-scheme heterojunction for photocatalytic CO2 reduction. With the active combination, it is discovered that Z-scheme provided an interfacial free charge carrier and the availability of oxygen vacancies offered active sites, which ultimately increased the CO2 photoconversion activity 30.1 mu mol center dot g(-1 center dot)h(-1) into CO by the CeO2/WO3 composite, much higher than that of pristine CeO2. Furthermore, the enhanced light absorption and a low defective surface contributed to the enriched interfacial conversion efficiency upon heterojunction formation. The urbach energy tail (E-u) of the composite offered the slow charge recombination rate that enhanced CO2 reduction. This paper offered an idea for constructing synergistic interfacial interaction in Z- scheme heterostructure for enhancing the activity of CO2 reduction.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction
    Guo, Lina
    You, Yong
    Huang, Hongwei
    Tian, Na
    Ma, Tianyi
    Zhang, Yihe
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 568 : 139 - 147
  • [32] Construction and photocatalytic CO2 reduction performance of S.scheme heterojunction ZnFe2O4/WO3 catalysts
    Liu Ping
    Zhu Chengcai
    Li Yanyang
    Yao Hongchang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2024, 40 (01) : 197 - 208
  • [33] Boosting Photocatalytic N2 Fixation on N-Defect g-C3N4/WO3: the Synergistic Effects of Nitrogen Vacancy and Z-Scheme Heterojunction
    Shang, Huan
    Ye, Xingyu
    Jia, Hongbao
    Zhu, Qiong
    Zhang, Dieqing
    Wang, Ding
    Li, Guisheng
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (05)
  • [34] The Z-scheme g-C3N4/3DOM-WO3 photocatalysts with enhanced activity for CO2 photoreduction into CO
    Tang, Zhiling
    Wang, Chujun
    He, Wenjie
    Wei, Yuechang
    Zhao, Zhen
    Liu, Jian
    CHINESE CHEMICAL LETTERS, 2022, 33 (02) : 939 - 942
  • [35] An Electron Bridge of Shared Atoms Mediated Cs3Bi2Br9/Bi2WO6 Z-Scheme Heterojunction for Photocatalytic CO2 Reduction
    Liu, Haolan
    Sun, Jingjing
    Lin, Qianying
    Wang, Ying
    Wang, Shuo
    Wang, Shuowen
    Lv, Yujing
    Wen, Na
    Yuan, Rusheng
    Ding, Zhengxin
    Long, Jinlin
    CHEMCATCHEM, 2024, 16 (22)
  • [36] One-dimenSional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation
    Gao, Hongqing
    Zhang, Peng
    Hu, Junhua
    Pan, Jimin
    Fan, Jiajie
    Shao, Guosheng
    APPLIED SURFACE SCIENCE, 2017, 391 : 211 - 217
  • [37] Photocatalytic CO2 reduction activity of Z-scheme CdS/CdWO4 catalysts constructed by surface charge directed selective deposition of CdS
    Li, Yan-Yang
    Wei, Zhi-He
    Fan, Jin-Bin
    Li, Zhong-Jun
    Yao, Hong-Chang
    APPLIED SURFACE SCIENCE, 2019, 483 : 442 - 452
  • [38] CeO2/Cr2O3 direct Z-scheme heterojunction for photo-thermal synergistic catalytic isopropanol degradation and nitrogen fixation
    Zhou, Kun
    Sun, Hao
    Liu, Yajing
    Wang, Qian
    Liu, Bin
    Li, Dongke
    Zhao, Hongming
    Tao, Ran
    Fan, Xiaoxing
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (02) : 490 - 503
  • [39] Z-scheme heterojunctions of NF@ZnO/0.5CeO2 monolithic catalyst for photothermal catalytic CO2 reduction under concentrated solar irradiation
    Li, Yun
    Liu, Bo
    Li, Yanpeng
    Wu, Meiqi
    Wang, Hangxiang
    Zhou, Jiancheng
    Li, Naixu
    JOURNAL OF PHOTONICS FOR ENERGY, 2024, 14 (03):
  • [40] Enhanced photocatalytic CO 2 reduction over Z-scheme β-Ga 2 O 3 /TiO 2 heterojunction composite catalyst: Synthesis, performance, and mechanism
    Hua, Rui
    Huang, Yihang
    Xia, Yu
    She, Houde
    Wang, Lei
    Huang, Jingwei
    Wang, Qizhao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (04):