A New Bivariate Birnbaum-Saunders Type Distribution Based on the Skew Generalized Normal Model

被引:1
作者
Arnold, Barry C. [1 ]
Gallardo, Diego I. [2 ]
Gomez, Hector W. [3 ]
机构
[1] Univ Calif Riverside, Stat Dept, Riverside, CA 92521 USA
[2] Univ Atacama, Fac Ingn, Dept Matemat, Copiapo, Chile
[3] Univ Antofagasta, Fac Ciencias Bas, Dept Estadist & Ciencias Datos, Antofagasta, Chile
关键词
Birnbaum-Saunders distribution; bivariate distribution; conditional specifications; EM algorithm; MAXIMUM-LIKELIHOOD; CONDITIONALS; INFERENCE; FAMILY;
D O I
10.57805/revstat.v21i1.396
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
center dot It is well known that it is possible to represent a Birnbaum-Saunders variable as a relatively simple (and invertible) function of a standard normal random variable. Marginal transformations of this kind are applied in this paper to a bivariate distribution with generalized skew-normal conditionals (and normal marginals), to obtain a new bivariate Birnbaum-Saunders distribution. Parameter estimation for this model is implemented using an EM algorithm. A simulation study sheds light on the performance of the estimation strategy. Data from a cancer risk study is used to illustrate use of the model. For this data set, the new model exhibits better performance than does a competing skew-normal based model already discussed in the literature. Possible multivariate extensions of the new model are outlined.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 40 条
[21]  
Faraway J., 2019, goftest: Classical Goodness-of- Fit Tests for Univariate Distributions
[22]   A Method for Multivariate Probability Distributions Construction via Parameter Dependence [J].
Filus, Jerzy K. ;
Filus, Lidia Z. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (04) :716-721
[23]  
Genz A., 2020, MVTNORM MULTIVARIATE
[24]   Properties and Inference on the Skew-Curved-Symmetric Family of Distributions [J].
Gomez, Hector W. ;
Castro, Luis M. ;
Salinas, Hugo S. ;
Bolfarine, Heleno .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (05) :884-898
[25]  
KALLIOVIRTA L., 2008, DISCUSSION PAPERS HE, V247
[26]  
Kolmogorov A., 1933, Sulla determinazione empirica di una legge di distribuzione, V4, P83
[27]   Bivariate Birnbaum-Saunders distribution and associated inference [J].
Kundu, Debasis ;
Balakrishnan, N. ;
Jamalizadeh, A. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (01) :113-125
[28]  
Leiva V., 2016, The Birnbaum-Saunders Distribution
[29]   Multivariate Birnbaum-Saunders distribution: properties and associated inference [J].
Lemonte, Artur J. ;
Martinez-Florez, Guillermo ;
Moreno-Arenas, German .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (02) :374-392
[30]  
Maindonald JH., 2020, DAAG DATA ANAL GRAPH