On the Continuity of the Solution Map of the Euler-Poincare Equations in Besov Spaces

被引:0
|
作者
Li, Min [1 ]
Liu, Huan [2 ]
机构
[1] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330032, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Poincare equations; Nowhere uniformly continuous; Besov spaces; Data-to-solution map; SHALLOW-WATER EQUATION; CAMASSA-HOLM; NONUNIFORM DEPENDENCE; WELL-POSEDNESS; ILL-POSEDNESS; INITIAL DATA; EXISTENCE; BREAKING; FAMILY;
D O I
10.1007/s00021-023-00778-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing a series of perturbation functions through localization in the Fourier domain and using a symmetric form of the system, we show that the data-to-solution map for the Euler-Poincare'equations is nowhere uniformly continuous in B-p,r(s)(R-d) with s > max{1+ d/2, 3/2 } and (p, r) ? (1, 8) x [1, 8). This improves our previous result (Li et al. in Nonlinear Anal RWA 63:103420, 2022) which shows the data-to-solution map for the Euler-Poincare' equations is non-uniformly continuous on a bounded subset of B-p,r(s)(R-d) near the origin.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] On the Ill-posedness for the Navier-Stokes Equations in the Weakest Besov Spaces
    Yu, Yanghai
    Li, Jinlu
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02)
  • [42] GLOBAL SOLUTIONS TO CHEMOTAXIS-NAVIER-STOKES EQUATIONS IN CRITICAL BESOV SPACES
    Yang, Minghua
    Fu, Zunwei
    Sun, Jinyi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 3427 - 3460
  • [43] Ill-Posedness Issue on a Multidimensional Chemotaxis Equations in the Critical Besov Spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [44] Global Solutions to 3D Rotating Boussinesq Equations in Besov Spaces
    Sun, Jinyi
    Liu, Chunlan
    Yang, Minghua
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) : 589 - 603
  • [45] Existence of solution for the Euler equations in a critical Besov space B1∞,1(Rn)
    Pak, HC
    Park, YJ
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (7-8) : 1149 - 1166
  • [46] Persistence of the incompressible Euler equations in a Besov space B1,1d+1(Rd)
    Pak, Hee Chul
    Park, Young Ja
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [47] The two-dimensional stationary Navier-Stokes equations in toroidal Besov spaces
    Tsurumi, Hiroyuki
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) : 1651 - 1668
  • [48] Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces
    Li, Jinlu
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) : 6125 - 6143
  • [49] GLOBAL WELL-POSEDNESS IN CRITICAL BESOV SPACES FOR TWO-FLUID EULER-MAXWELL EQUATIONS
    Xu, Jiang
    Xiong, Jun
    Kawashima, Shuichi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1422 - 1447
  • [50] Holder continuity of the solution map for the Novikov equation
    Himonas, A. Alexandrou
    Holmes, John
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)