On the Continuity of the Solution Map of the Euler-Poincare Equations in Besov Spaces

被引:0
|
作者
Li, Min [1 ]
Liu, Huan [2 ]
机构
[1] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330032, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Poincare equations; Nowhere uniformly continuous; Besov spaces; Data-to-solution map; SHALLOW-WATER EQUATION; CAMASSA-HOLM; NONUNIFORM DEPENDENCE; WELL-POSEDNESS; ILL-POSEDNESS; INITIAL DATA; EXISTENCE; BREAKING; FAMILY;
D O I
10.1007/s00021-023-00778-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing a series of perturbation functions through localization in the Fourier domain and using a symmetric form of the system, we show that the data-to-solution map for the Euler-Poincare'equations is nowhere uniformly continuous in B-p,r(s)(R-d) with s > max{1+ d/2, 3/2 } and (p, r) ? (1, 8) x [1, 8). This improves our previous result (Li et al. in Nonlinear Anal RWA 63:103420, 2022) which shows the data-to-solution map for the Euler-Poincare' equations is non-uniformly continuous on a bounded subset of B-p,r(s)(R-d) near the origin.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] DISCRETE SECOND-ORDER EULER-POINCARE EQUATIONS. APPLICATIONS TO OPTIMAL CONTROL
    Colombo, Leonardo
    Jimenez, Fernando
    Martin de Diego, David
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (04)
  • [22] ON THE 3D EULER EQUATIONS WITH CORIOLIS FORCE IN BORDERLINE BESOV SPACES*
    Angulo-Castillo, Vladimir
    Ferreira, Lucas C. F.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (01) : 145 - 164
  • [23] Local well-posedness for the incompressible Euler equations in the critical Besov spaces
    Zhou, Y
    ANNALES DE L INSTITUT FOURIER, 2004, 54 (03) : 773 - +
  • [25] Euler-Poincare reduction in principal bundles by a subgroup of the structure group
    Castrillon Lopez, M.
    Garcia, P. L.
    Rodrigo, C.
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 74 : 352 - 369
  • [26] Decomposing Euler-Poincare Flow on the Space of Hamiltonian Vector Fields
    Esen, Ogul
    De Lucas, Javier
    Munoz, Cristina Sardon
    Zajac, Marcin
    SYMMETRY-BASEL, 2023, 15 (01):
  • [27] Non-uniform Continuity of the Generalized Camassa-Holm Equation in Besov Spaces
    Li, Jinlu
    Wu, Xing
    Zhu, Weipeng
    Guo, Jiayu
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (01)
  • [28] Euler-Poincare reduction in principal fibre bundles and the problem of Lagrange
    Castrillon, Marco
    Garcia, Pedro L.
    Rodrigo, Cesar
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (06) : 585 - 593
  • [29] New variational and multisymplectic formulations of the Euler-Poincare equation on the Virasoro-Bott group using the inverse map
    Holm, Darryl D.
    Tyranowski, Tomasz M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2213):
  • [30] Continuity Properties of the Solution Map for the Euler-Poisson Equation
    Holmes, J.
    Tiglay, F.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (02) : 757 - 769