Comparison of Multi-Scale Nonlinear and Conventional Linear Methods for Stress Analysis of Nb3Sn Superconducting Magnets

被引:0
作者
Sun, Eric [1 ]
Ghoshal, Probir K. [1 ]
Kashy, David [1 ]
Rajput-Ghoshal, Renuka [1 ]
Young, Dan [1 ]
Fair, Ruben [2 ]
机构
[1] Jefferson Lab, Newport News, VA 23606 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
关键词
Coils; Stress; Gaskets; Strain; Superconducting magnets; Magnetomechanical effects; Copper; Hill material; gasket; nonlinear stress analysis; superconducting magnets;
D O I
10.1109/TASC.2023.3249654
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This is an extension of the work on a multi-scale nonlinear procedure that demonstrated how to conduct nonlinear stress analysis of Nb3Sn superconducting accelerator magnets. The nonlinear procedure uses measured stress-strain curves of annealed copper, Nb3Sn strands and coil samples as inputs, which reduces the number of assumptions made for material properties-key uncertainties of any engineering analysis. The results from nonlinear analysis, semi-nonlinear analysis, and linear analysis of the same QFFB2 Nb3Sn quadrupole magnet under the same temperature and loads, were compared and discussed. The comparison illustrates that nonlinear stress analysis is significantly more accurate than other methods. As the superconducting coil block is a complex, composite material, it would be inadequate to assume the whole coil block to be linear, either isotropic or orthotropic. It is imperative to conduct nonlinear analysis by simulating the superconducting coil to the level of detail of the individual cables and individual strands. The nonlinear stress analysis procedure can be used to simulate not only Nb3Sn magnets, but also NbTi and HTS magnets.
引用
收藏
页数:5
相关论文
共 18 条
[1]   HE-LHC: The High-Energy Large Hadron Collider Future Circular Collider Conceptual Design Report Volume 4 [J].
Abada, A. ;
Abbrescia, M. ;
AbdusSalam, S. S. ;
Abdyukhanov, I. ;
Abelleira Fernandez, J. ;
Abramov, A. ;
Aburaia, M. ;
Acar, A. O. ;
Adzic, P. R. ;
Agrawal, P. ;
Aguilar-Saavedra, J. A. ;
Aguilera-Verdugo, J. J. ;
Aiba, M. ;
Aichinger, I. ;
Aielli, G. ;
Akay, A. ;
Akhundov, A. ;
Aksakal, H. ;
Albacete, J. L. ;
Albergo, S. ;
Alekou, A. ;
Aleksa, M. ;
Aleksan, R. ;
Alemany Fernandez, R. M. ;
Alexahin, Y. ;
Alia, R. G. ;
Alioli, S. ;
Alipour Tehrani, N. ;
Allanach, B. C. ;
Allport, P. P. ;
Altinli, M. ;
Altmannshofer, W. ;
Ambrosio, G. ;
Amorim, D. ;
Amstutz, O. ;
Anderlini, L. ;
Andreazza, A. ;
Andreini, M. ;
Andriatis, A. ;
Andris, C. ;
Andronic, A. ;
Angelucci, M. ;
Antinori, F. ;
Antipov, S. A. ;
Antonelli, M. ;
Antonello, M. ;
Antonioli, P. ;
Antusch, S. ;
Anulli, F. ;
Apolinario, L. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (05) :1109-1382
[2]  
Bordini B, 2012, EFFECT STRAIN NB3SN
[3]  
Committee on U.S.-Based Electron-Ion Collider Science Assessment Board on Physics and Astronomy Division on Engineering and Physical Sciences, 2018, ASS US BAS EL ION CO
[4]  
Durante M., 2017, WORKSHOP NB3SN RUTHE
[5]   Transverse-pressure susceptibility of high-Jc RRP and PIT types of Nb3Sn Rutherford cables for accelerator magnets [J].
Gao, P. ;
Dhalle, M. ;
Bordini, B. ;
Ballarino, A. ;
Ten Kate, H. H. J. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (12)
[6]  
Hampson M., 2019, IEEE SPECTR JAN
[7]  
Hill R., 1950, The Mathematical Theory of Plasticity
[8]  
ITER, 2001, N11FDR26010704 ITER
[9]  
Material Properties Database, 2020, MPDB V897
[10]  
Nyilas A, 2008, AIP CONF PROC, V986, P116