Local well-posedness and global analyticity for solutions of a generalized 0-equation

被引:3
作者
da Silva, Priscila L. [1 ,2 ]
机构
[1] Loughborough Univ, Sch Sci, Dept Math Sci, Loughborough, England
[2] Univ Fed ABC, Ctr Math Computat & Cognit, Santo Andre, Brazil
基金
巴西圣保罗研究基金会;
关键词
Well-posedness; gevrey spaces; b-equation; Holm-Staley equation; SHALLOW-WATER EQUATION; CAMASSA-HOLM; CAUCHY-PROBLEM; EXISTENCE; BREAKING; FAMILY;
D O I
10.1017/prm.2022.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the Cauchy problem in Gevrey spaces for a generalized class of equations that contains the case b = 0 of the b-equation. For the generalized equation, we prove that it is locally well-posed for initial data in Gevrey spaces. Moreover, as we move to global well-posedness, we show that for a particular choice of the parameter in the equation the local solution is global analytic in both time and spatial variables.
引用
收藏
页码:1630 / 1650
页数:21
相关论文
共 50 条
[31]   Global Well-Posedness for the Massless Cubic Dirac Equation [J].
Bournaveas, Nikolaos ;
Candy, Timothy .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (22) :6735-6828
[32]   Global Well-posedness of the Stochastic Generalized Kuramoto-Sivashinsky Equation with Multiplicative Noise [J].
Wu, Wei ;
Cui, Shang-bin ;
Duan, Jin-qiao .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (03) :566-584
[33]   LOCAL WELL-POSEDNESS FOR THE INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION [J].
Aloui, Lassaad ;
Tayachi, Slim .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (11) :5409-5437
[34]   On the well-posedness of generalized Darcy–Forchheimer equation [J].
Johnson D. Audu ;
Faisal A. Fairag ;
Salim A. Messaoudi .
Boundary Value Problems, 2018
[35]   The local well-posedness of solutions for a nonlinear pseudo-parabolic equation [J].
Shaoyong Lai ;
Haibo Yan ;
Yang Wang .
Boundary Value Problems, 2014
[36]   Well-posedness and behaviors of solutions to an integrable evolution equation [J].
Ming, Sen ;
Lai, Shaoyong ;
Su, Yeqin .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[37]   WELL-POSEDNESS AND SCATTERING FOR THE GENERALIZED BOUSSINESQ EQUATION [J].
Chen, Jie ;
Guo, Boling ;
Shao, Jie .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (01) :133-161
[38]   Local and global well-posedness of stochastic Zakharov-Kuznetsov equation [J].
Ghany, Hossam. A. ;
Hyder, Abd-Allah .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (07) :1332-1343
[39]   The local well-posedness of solutions for a nonlinear pseudo-parabolic equation [J].
Lai, Shaoyong ;
Yan, Haibo ;
Wang, Yang .
BOUNDARY VALUE PROBLEMS, 2014, :1-8
[40]   Global well-posedness for the nonlinear wave equation in analytic Gevrey spaces [J].
da Silva, Daniel Oliveira ;
Castro, Alejandro J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 :234-249