Local well-posedness and global analyticity for solutions of a generalized 0-equation

被引:3
|
作者
da Silva, Priscila L. [1 ,2 ]
机构
[1] Loughborough Univ, Sch Sci, Dept Math Sci, Loughborough, England
[2] Univ Fed ABC, Ctr Math Computat & Cognit, Santo Andre, Brazil
基金
巴西圣保罗研究基金会;
关键词
Well-posedness; gevrey spaces; b-equation; Holm-Staley equation; SHALLOW-WATER EQUATION; CAMASSA-HOLM; CAUCHY-PROBLEM; EXISTENCE; BREAKING; FAMILY;
D O I
10.1017/prm.2022.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the Cauchy problem in Gevrey spaces for a generalized class of equations that contains the case b = 0 of the b-equation. For the generalized equation, we prove that it is locally well-posed for initial data in Gevrey spaces. Moreover, as we move to global well-posedness, we show that for a particular choice of the parameter in the equation the local solution is global analytic in both time and spatial variables.
引用
收藏
页码:1630 / 1650
页数:21
相关论文
共 50 条