Left Atrial Strain in the Assessment of Diastolic Function in Heart Failure: A Machine Learning Approach

被引:30
作者
Carluccio, Erberto [1 ,5 ]
Cameli, Matteo [2 ]
Rossi, Andrea [4 ]
Dini, Frank Lloyd [3 ]
Biagioli, Paolo [1 ]
Mengoni, Anna [1 ]
Jacoangeli, Francesca [1 ]
Mandoli, Giulia Elena [2 ]
Pastore, Maria Concetta [2 ]
Maffeis, Caterina [4 ]
Ambrosio, Giuseppe [1 ]
机构
[1] Univ Perugia, S Maria Misericordia Hosp, Cardiol & Cardiovasc Pathophysiol, Perugia, Italy
[2] Univ Siena, Dept Med Biotechnol, Div Cardiol, Siena, Italy
[3] Univ Pisa, Cardiac Thorac & Vasc Dept, Pisa, Italy
[4] Azienda Osped Univ, Verona, Italy
[5] FESC Univ Perugia, S Maria Misericordia Hosp, Cardiol & Cardiovasc Pathophysiol, Perugia, Italy
关键词
2D echocardiography; atrial function; diastole; heart failure; machine learning; PROGNOSTIC RELEVANCE; EUROPEAN ASSOCIATION; EJECTION FRACTION; AMERICAN SOCIETY; FILLING PRESSURE; RECOMMENDATIONS; ECHOCARDIOGRAPHY; VALIDATION; GUIDELINES;
D O I
10.1161/CIRCIMAGING.122.014605
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background:Diastolic dysfunction (DD) assessment in heart failure is still challenging. Peak atrial longitudinal strain (PALS) is strongly related to end-diastolic pressure and prognosis, but it is still not part of standard DD assessment. We tested the hypothesis that a machine learning approach would be useful to include PALS in DD classification and refine prognostic stratification. Methods:In a derivation cohort of 864 heart failure patients in sinus rhythm (age, 66.6 +/- 12 years; heart failure with reduced ejection fraction, n=541; heart failure with mildly reduced ejection fraction, n=129; heart failure with preserved ejection fraction, n=194), machine learning techniques were retrospectively applied to PALS and guideline-recommended diastolic variables. Outcome (death/heart failure rehospitalization) of the identified DD-clusters was compared with that by guidelines-based classification. To identify the best combination of variables able to classify patients in one of the identified DD-clusters, classification and regression tree analysis was applied (with DD-clusters as dependent variable and PALS plus guidelines-recommended diastolic variables as explanatory variables). The algorithm was subsequently validated in a prospective cohort of 189 heart failure outpatients (age, 65 +/- 13 years). Results:Three distinct echocardiographic DD-clusters were identified (cluster-1, n=212; cluster-2, n=376; cluster-3 DD, n=276), with modest agreement with guidelines-recommended classification (kappa=0.40; P<0.001). DD-clusters were predicted by a simple algorithm including E/A ratio, left atrial volume index, E/e ' ratio, and PALS. After 36.5 +/- 29.4 months follow-up, 318 events occurred. Compared to guideline-based classification, DD-clusters showed a better association with events in multivariable models (C-index 0.720 versus 0.733, P=0.033; net reclassification improvement 0.166 [95% CI, 0.035-0.276], P=0.013), without interaction with ejection fraction category. In the validation cohort (median follow-up: 18.5 months), cluster-based classification better predicted outcome than guideline-based classification (C-index 0.80 versus 0.78, P=0.093). Conclusions:Integrating PALS by machine learning algorithm in DD classification improves risk stratification over recommended current criteria, regardless of ejection fraction status. This proof of concept study needs further validation of the proposed algorithm to assess generalizability to other populations.
引用
收藏
页码:183 / 194
页数:12
相关论文
共 27 条
[1]   Invasive Validation of the Echocardiographic Assessment of Left Ventricular Filling Pressures Using the 2016 Diastolic Guidelines: Head-to-Head Comparison with the 2009 Guidelines [J].
Balaney, Bhavna ;
Medvedofsky, Diego ;
Mediratta, Anuj ;
Singh, Amita ;
Ciszek, Boguslawa ;
Kruse, Eric ;
Shah, Atman P. ;
Addetia, Karima ;
Lang, Roberto M. ;
Mor-Avi, Victor .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2018, 31 (01) :79-88
[2]   Global longitudinal strain in heart failure with reduced ejection fraction: Prognostic relevance across disease severity as assessed by automated cluster analysis [J].
Carluccio, Erberto ;
Pugliese, Nicola Riccardo ;
Biagioli, Paolo ;
Zuchi, Cinzia ;
Lauciello, Rosanna ;
Mengoni, Anna ;
D'Agostino, Andreina ;
Galeotti, Gian Giacomo ;
Dini, Frank Lloyd ;
Ambrosio, Giuseppe .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 332 :91-98
[3]   Left Atrial Reservoir Function and Outcome in Heart Failure With Reduced Ejection Fraction The Importance of Atrial Strain by Speckle Tracking Echocardiography [J].
Carluccio, Erberto ;
Biagioli, Paolo ;
Mengoni, Anna ;
Cerasa, Maria Francesca ;
Lauciello, Rosanna ;
Zuchi, Cinzia ;
Bardelli, Giuliana ;
Alunni, Gianfranco ;
Coiro, Stefano ;
Gronda, Edoardo G. ;
Ambrosio, Giuseppe .
CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (11) :e007696
[4]   LA Mechanics in Decompensated Heart Failure Insights From Strain Echocardiography With Invasive Hemodynamics [J].
Deferm, Sebastien ;
Martens, Pieter ;
Verbrugge, Frederik H. ;
Bertrand, Philippe B. ;
Dauw, Jeroen ;
Verhaert, David ;
Dupont, Matthias ;
Vandervoort, Pieter M. ;
Mullens, Wilfried .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (05) :1107-1115
[5]   Correlation of left atrial strain with left ventricular end-diastolic pressure in patients with normal left ventricular ejection fraction [J].
Fan, Jia-Li ;
Su, Bo ;
Zhao, Xin ;
Zhou, Bing-Yuan ;
Ma, Chang-Sheng ;
Wang, Hai-Peng ;
Hu, Sheng-Da ;
Zhou, Ya-Feng ;
Ju, Yi-Jiao ;
Wang, Ming-Han .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2020, 36 (09) :1659-1666
[6]   Left atrial strain as sensitive marker of left ventricular diastolic dysfunction in heart failure [J].
Frydas, Athanasios ;
Morris, Daniel A. ;
Belyavskiy, Evgeny ;
Radhakrishnan, Aravind-Kumar ;
Kropf, Martin ;
Tadic, Marijana ;
Roessig, Lothar ;
Lam, Carolyn S. P. ;
Shah, Sanjiv J. ;
Solomon, Scott D. ;
Pieske, Burkert ;
Pieske-Kraigher, Elisabeth .
ESC HEART FAILURE, 2020, 7 (04) :1956-1965
[7]   Prognostic relevance of Doppler echocardiographic re-assessment in HFrEF patients [J].
Ghio, Stefano ;
Carluccio, Erberto ;
Scardovi, Angela Beatrice ;
Dini, Frank Lloyd ;
Rossi, Andrea ;
Falletta, Calogero ;
Scelsi, Laura ;
Greco, Alessandra ;
Temporelli, Pier Luigi .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 327 :111-116
[8]   Meta-analysis of echocardiographic quantification of left ventricular filling pressure [J].
Jones, Rachel ;
Varian, Frances ;
Alabed, Samer ;
Morris, Paul ;
Rothman, Alexander ;
Swift, Andrew J. ;
Lewis, Nigel ;
Kyriacou, Andreas ;
Wild, James M. ;
Al-Mohammad, Abdallah ;
Zhong, Liang ;
Dastidar, Amardeep ;
Storey, Robert F. ;
Swoboda, Peter P. ;
Bax, Jeroen J. ;
Garg, Pankaj .
ESC HEART FAILURE, 2021, 8 (01) :566-576
[9]   A Phenotyping of Diastolic Function by Machine Learning Improves Prediction of Clinical Outcomes in Heart Failure [J].
Kameshima, Haruka ;
Uejima, Tokuhisa ;
Fraser, Alan G. ;
Takahashi, Lisa ;
Cho, Junyi ;
Suzuki, Shinya ;
Kato, Yuko ;
Yajima, Junji ;
Yamashita, Takeshi .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
[10]   Redefining Diastolic Dysfunction Grading Combination of E/A ≤0.75 and Deceleration Time &gt;140 ms and E/ε′ ≥10 [J].
Kuwaki, Hiroshi ;
Takeuchi, Masaaki ;
Wu, Victor Chien-Chia ;
Otani, Kyoko ;
Nagata, Yasufumi ;
Hayashi, Atsushi ;
Iwataki, Mai ;
Fukuda, Shota ;
Yoshitani, Hidetoshi ;
Abe, Haruhiko ;
Otsuji, Yutaka .
JACC-CARDIOVASCULAR IMAGING, 2014, 7 (08) :749-758