FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation

被引:137
作者
Tomar, Nikhil Kumar [1 ]
Jha, Debesh [1 ,2 ]
Riegler, Michael A. [1 ,2 ]
Johansen, Havard D. [2 ]
Johansen, Dag [2 ]
Rittscher, Jens [3 ,4 ,5 ]
Halvorsen, Pal [1 ,6 ]
Ali, Sharib [7 ,8 ]
机构
[1] SimulaMet, N-0167 Oslo, Norway
[2] UiT Arctic Univ Norway, Dept Comp Sci, N-9037 Tromso, Norway
[3] Univ Oxford, Big Data Inst, Dept Engn Sci, Oxford OX3 7LF, England
[4] Univ Oxford, Big Data Inst, Li Ka Shing Ctr Hlth Informat & Discovery, Oxford OX3 7LF, England
[5] Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford OX3 9DU, England
[6] Oslo Metropolitan Univ, Dept Comp Sci, N-0167 Oslo, Norway
[7] Univ Oxford, Dept Engn Sci, Oxford OX3 7LF, England
[8] Oxford Natl Inst Hlth Res, Biomed Res Ctr, Oxford OX4 2PG, England
关键词
Image segmentation; Biomedical imaging; Computer architecture; Training; Imaging; Biological system modeling; Semantics; Cell nuclei; colon polyps; deep learning; feedback attention; lung segmentation; medical image segmentation; retinal vessels; skin lesion; VALIDATION;
D O I
10.1109/TNNLS.2022.3159394
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increase of available large clinical and experimental datasets has contributed to a substantial amount of important contributions in the area of biomedical image analysis. Image segmentation, which is crucial for any quantitative analysis, has especially attracted attention. Recent hardware advancement has led to the success of deep learning approaches. However, although deep learning models are being trained on large datasets, existing methods do not use the information from different learning epochs effectively. In this work, we leverage the information of each training epoch to prune the prediction maps of the subsequent epochs. We propose a novel architecture called feedback attention network (FANet) that unifies the previous epoch mask with the feature map of the current training epoch. The previous epoch mask is then used to provide hard attention to the learned feature maps at different convolutional layers. The network also allows rectifying the predictions in an iterative fashion during the test time. We show that our proposed feedback attention model provides a substantial improvement on most segmentation metrics tested on seven publicly available biomedical imaging datasets demonstrating the effectiveness of FANet. The source code is available at https://github.com/nikhilroxtomar/FANet.
引用
收藏
页码:9375 / 9388
页数:14
相关论文
共 56 条
[1]  
Alom M.Z., 2018, CoRR
[2]  
[Anonymous], 2018, Cancer Facts and Figures 2018
[3]   Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions [J].
Azad, Reza ;
Asadi-Aghbolaghi, Maryam ;
Fathy, Mahmood ;
Escalera, Sergio .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :406-415
[4]  
Bai S., 2018, An empirical evaluation of generic convolutional and recurrent networks for 2018
[5]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[6]   Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl [J].
Caicedo, Juan C. ;
Goodman, Allen ;
Karhohs, Kyle W. ;
Cimini, Beth A. ;
Ackerman, Jeanelle ;
Haghighi, Marzieh ;
Heng, CherKeng ;
Becker, Tim ;
Minh Doan ;
McQuin, Claire ;
Rohban, Mohammad ;
Singh, Shantanu ;
Carpenter, Anne E. .
NATURE METHODS, 2019, 16 (12) :1247-+
[7]   An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy [J].
Cardona, Albert ;
Saalfeld, Stephan ;
Preibisch, Stephan ;
Schmid, Benjamin ;
Cheng, Anchi ;
Pulokas, Jim ;
Tomancak, Pavel ;
Hartenstein, Volker .
PLOS BIOLOGY, 2010, 8 (10)
[8]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[9]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[10]   Attention to Scale: Scale-aware Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Yang, Yi ;
Wang, Jiang ;
Xu, Wei ;
Yuille, Alan L. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3640-3649