Multivariable Prediction Models for Traumatic Spinal Cord Injury: A Systematic Review

被引:1
作者
Hakimjavadi, Ramtin [1 ]
Basiratzadeh, Shahin [1 ]
Wai, Eugene K. [1 ,2 ]
Baddour, Natalie [1 ]
Kingwell, Stephen [1 ,2 ]
Michalowski, Wojtek [1 ]
Stratton, Alexandra [1 ,2 ]
Tsai, Eve [1 ,2 ]
Viktor, Herna [1 ]
Phan, Philippe [1 ,2 ]
机构
[1] Univ Ottawa, Ottawa, ON, Canada
[2] Ottawa Hosp, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada
关键词
multivariable; prediction model; predictor selection; prognosis; systematic review; traumatic spinal cord injury; INDEPENDENCE MEASURE; OUTCOME PREDICTION; WALKING; RISK; CLASSIFICATION; IMPLEMENTATION; APPLICABILITY; INDIVIDUALS; AMBULATION; SEVERITY;
D O I
10.46292/sci23-00010
中图分类号
R49 [康复医学];
学科分类号
100215 ;
摘要
Background: Traumatic spinal cord injuries (TSCI) greatly affect the lives of patients and their families. Prognostication may improve treatment strategies, health care resource allocation, and counseling. Multivariable clinical prediction models (CPMs) for prognosis are tools that can estimate an absolute risk or probability that an outcome will occur. Objectives: We sought to systematically review the existing literature on CPMs for TSCI and critically examine the predictor selection methods used. Methods: We searched MEDLINE, PubMed, Embase, Scopus, and IEEE for English peer-reviewed studies and relevant references that developed multivariable CPMs to prognosticate patient-centered outcomes in adults with TSCI. Using narrative synthesis, we summarized the characteristics of the included studies and their CPMs, focusing on the predictor selection process. Results: We screened 663 titles and abstracts; of these, 21 full-text studies (2009-2020) consisting of 33 distinct CPMs were included. The data analysis domain was most commonly at a high risk of bias when assessed for methodological quality. Model presentation formats were inconsistently included with published CPMs; only two studies followed established guidelines for transparent reporting of multivariable prediction models. Authors frequently cited previous literature for their initial selection of predictors, and stepwise selection was the most frequent predictor selection method during modelling. Conclusion: Prediction modelling studies for TSCI serve clinicians who counsel patients, researchers aiming to risk-stratify participants for clinical trials, and patients coping with their injury. Poor methodological rigor in data analysis, inconsistent transparent reporting, and a lack of model presentation formats are vital areas for improvement in TSCI CPM research.
引用
收藏
页码:1 / 44
页数:44
相关论文
共 73 条
[1]   Traumatic spinal cord injury [J].
Ahuja, Christopher S. ;
Wilson, Jefferson R. ;
Nori, Satoshi ;
Kotter, Mark R. N. ;
Druschel, Claudia ;
Curt, Armin ;
Fehlings, Michael G. .
NATURE REVIEWS DISEASE PRIMERS, 2017, 3
[2]   Clinical Predictors of Recovery after Blunt Spinal Cord Trauma: Systematic Review [J].
Al-Habib, Amro F. ;
Attabib, Najmedden ;
Ball, Jonathon ;
Bajammal, Sohail ;
Casha, Steve ;
Hurlbert, R. John .
JOURNAL OF NEUROTRAUMA, 2011, 28 (08) :1431-1443
[3]   A prediction model of functional outcome at 6 months using clinical findings of a person with traumatic spinal cord injury at 1 month after injury [J].
Ariji, Yuto ;
Hayashi, Tetsuo ;
Ideta, Ryosuke ;
Koga, Ryuichiro ;
Murai, Satoshi ;
Towatari, Fumihiro ;
Terashi, Yoshiteru ;
Sakai, Hiroaki ;
Kurata, Hiroyuki ;
Maeda, Takeshi .
SPINAL CORD, 2020, 58 (11) :1158-1165
[4]   Developing Artificial Neural Network Models to Predict Functioning One Year After Traumatic Spinal Cord Injury [J].
Belliveau, Timothy ;
Jette, Alan M. ;
Seetharama, Subramani ;
Axt, Jeffrey ;
Rosenblum, David ;
Larose, Daniel ;
Houlihan, Bethlyn ;
Slavin, Mary ;
Larose, Chantal .
ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2016, 97 (10) :1663-1668
[5]   Reporting and Methods in Clinical Prediction Research: A Systematic Review [J].
Bouwmeester, Walter ;
Zuithoff, Nicolaas P. A. ;
Mallett, Susan ;
Geerlings, Mirjam I. ;
Vergouwe, Yvonne ;
Steyerberg, Ewout W. ;
Altman, Douglas G. ;
Moons, Karel G. M. .
PLOS MEDICINE, 2012, 9 (05)
[6]  
Cadotte David W, 2011, Expert Opin Med Diagn, V5, P121, DOI 10.1517/17530059.2011.556111
[7]   A multicenter international study on the Spinal Cord Independence Measure, version III:: Rasch psychometric validation [J].
Catz, A. ;
Itzkovich, M. ;
Tesio, L. ;
Biering-Sorensen, F. ;
Weeks, C. ;
Laramee, M. T. ;
Craven, B. C. ;
Tonack, M. ;
Hitzig, S. L. ;
Glaser, E. ;
Zeilig, G. ;
Aito, S. ;
Scivoletto, G. ;
Mecci, M. ;
Chadwick, R. J. ;
El Masry, W. S. ;
Osman, A. ;
Glass, C. A. ;
Silva, P. ;
Zeilig, G. ;
Aito, S. ;
Scivoletto, G. ;
Mecci, M. ;
Chadwick, R. J. ;
El Masry, W. S. ;
Osman, A. ;
Glass, C. A. ;
Silva, P. ;
Soni, B. M. ;
Gardner, B. P. ;
Savic, G. ;
Bergstrom, E. M. ;
Bluvshtein, V. ;
Ronen, J. .
SPINAL CORD, 2007, 45 (04) :275-291
[8]  
Catz A, 2001, DISABIL REHABIL, V23, P263
[9]   Mortality and Longevity after a Spinal Cord Injury: Systematic Review and Meta-Analysis [J].
Chamberlain, Jonviea D. ;
Meier, Sonja ;
Mader, Luzius ;
von Groote, Per M. ;
Brinkhof, Martin W. G. .
NEUROEPIDEMIOLOGY, 2015, 44 (03) :182-198
[10]   Variable selection strategies and its importance in clinical prediction modelling [J].
Chowdhury, Mohammad Ziaul Islam ;
Turin, Tanvir C. .
FAMILY MEDICINE AND COMMUNITY HEALTH, 2020, 8 (01)