Nonlinear propagation of whistler-mode in the presence of magnetic Islands in the magnetopause

被引:0
作者
Jyoti [1 ]
Sharma, Suresh C. [1 ]
Sharma, R. P. [2 ]
机构
[1] Delhi Technol Univ, Dept Appl Phys, Plasma & Nanosimulat Lab, Bawana Rd, Delhi 110042, India
[2] Indian Inst Technol Delhi, Dept Energy Sci & Engn, Plasma Simulat Lab, Hauz Khas 110016, New Delhi, India
关键词
NONTHERMAL PARTICLE-ACCELERATION; MHD TURBULENCE; SOLAR-WIND; RECONNECTION; PLASMA; MAGNETOSPHERE; DIFFUSION; EVOLUTION; SCALES;
D O I
10.1140/epjp/s13360-024-05036-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a framework for studying the nonlinear whistler wave at magnetic reconnection sites generated by energetic electron beam in the presence of magnetic islands as well as the nonlinearity. The governing model equation has been derived using the two-fluid model in the presence of the equilibrium magnetic field, consisting of a guide field and magnetic field due to magnetic islands. The dynamical equation for this nonlinear whistler wave has been solved numerically for the magnetopause region parameters. The findings obtained from simulation show that the contour plot of vector potential and current sheet formation is a result of nonlinearity and field perturbation. The numerically determined spectrum shows an inertial range with a spectral index of nearly - 5/3, followed by steeper scaling. This steepening in the turbulent spectrum is a characteristic of energy transit from larger to smaller scales. A new perspective on the scale size of current sheet is provided by our innovative approach for studying nonlinear whistler by energetic electron beam at the magnetic reconnection locations.
引用
收藏
页数:13
相关论文
共 67 条
[1]   Energy transfer in reconnection and turbulence [J].
Adhikari, S. ;
Parashar, T. N. ;
Shay, M. A. ;
Matthaeus, W. H. ;
Pyakurel, P. S. ;
Fordin, S. ;
Stawarz, J. E. ;
Eastwood, J. P. .
PHYSICAL REVIEW E, 2021, 104 (06)
[2]   Thin electron-scale layers at the magnetopause -: art. no. L03803 [J].
André, M ;
Vaivads, A ;
Buchert, SC ;
Fazakerley, AN ;
Lahiff, A .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (03) :L038031-4
[3]   Plasmoid instability in the semi-collisional regime [J].
Bhat, Pallavi ;
Loureiro, Nuno F. .
JOURNAL OF PLASMA PHYSICS, 2018, 84 (06)
[4]  
Bian NH, 2008, ASTROPHYS J LETT, V687, pL111, DOI 10.1086/593145
[5]  
Birn J., 2007, Reconnection of Magnetic Fields, DOI DOI 10.1017/CBO9780511536151
[6]   Two-dimensional electron magnetohydrodynamic turbulence [J].
Biskamp, D ;
Schwarz, E ;
Drake, JF .
PHYSICAL REVIEW LETTERS, 1996, 76 (08) :1264-1267
[7]   Electron magnetohydrodynamic turbulence [J].
Biskamp, D ;
Schwarz, E ;
Zeiler, A ;
Celani, A ;
Drake, JF .
PHYSICS OF PLASMAS, 1999, 6 (03) :751-758
[8]   Laboratory sources of turbulent plasma: a unique MHD plasma wind tunnel [J].
Brown, M. R. ;
Schaffner, D. A. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (06)
[9]   Magnetospheric Multiscale Overview and Science Objectives [J].
Burch, J. L. ;
Moore, T. E. ;
Torbert, R. B. ;
Giles, B. L. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :5-21
[10]   Localized Oscillatory Energy Conversion in Magnetopause Reconnection [J].
Burch, J. L. ;
Ergun, R. E. ;
Cassak, P. A. ;
Webster, J. M. ;
Torbert, R. B. ;
Giles, B. L. ;
Dorelli, J. C. ;
Rager, A. C. ;
Hwang, K. -J. ;
Phan, T. D. ;
Genestreti, K. J. ;
Allen, R. C. ;
Chen, L. -J. ;
Wang, S. ;
Gershman, D. ;
Le Contel, O. ;
Russell, C. T. ;
Strangeway, R. J. ;
Wilder, F. D. ;
Graham, D. B. ;
Hesse, M. ;
Drake, J. F. ;
Swisdak, M. ;
Price, L. M. ;
Shay, M. A. ;
Lindqvist, P. -A. ;
Pollock, C. J. ;
Denton, R. E. ;
Newman, D. L. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (03) :1237-1245