Computation of Turing Bifurcation Normal Form for n-Component Reaction-Diffusion Systems

被引:4
作者
Villar-Sepulveda, Edgardo [1 ]
Champneys, Alan [2 ]
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1TW, Avon, England
[2] Univ Bristol, Bristol, Avon, England
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2023年 / 49卷 / 04期
关键词
Normal form; Turing bifurcation; pattern formation; reaction diffusion; AMPLITUDE EQUATIONS; EXPONENTIAL ASYMPTOTICS; LOCALIZED PATTERNS; SNAKING;
D O I
10.1145/3625560
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
General expressions are derived for the amplitude equation valid at a Turing bifurcation of a system of reaction-diffusion equations in one spatial dimension, with an arbitrary number of components. The normal form is computed up to fifth order, which enables the detection and analysis of codimension-two points where the criticality of the bifurcation changes. The expressions are implemented within a Python package, in which the user needs to specify only expressions for the reaction kinetics and the values of diffusion constants. The code is augmented with a Mathematica routine to compute curves of Turing bifurcations in a parameter plane and automatically detect codimension-two points. The software is illustrated with examples that show the versatility of the method including a case with cross-diffusion, a higher-order scalar equation and a four-component system.
引用
收藏
页数:24
相关论文
共 29 条
[1]   Localized patterns and semi-strong interaction, a unifying framework for reaction-diffusion systems [J].
Al Saadi, Fahad ;
Champneys, Alan ;
Verschueren, Nicolas .
IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 86 (05) :1031-1065
[2]  
[Anonymous], 2003, SPRINGER MG MATH
[3]   Subcritical Turing bifurcation and the morphogenesis of localized patterns [J].
Brena-Medina, Victor ;
Champneys, Alan .
PHYSICAL REVIEW E, 2014, 90 (03)
[4]  
BURKE J., 2007, DISCRETE CONT DYN-A, P170
[5]   Bistability, wave pinning and localisation in natural reaction-diffusion systems? [J].
Champneys, Alan R. ;
Al Saadi, Fahad ;
Brena-Medina, Victor F. ;
Grieneisen, Veronica A. ;
Maree, Athanasius F. M. ;
Verschueren, Nicolas ;
Wuyts, Bert .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 416
[6]   Exponential asymptotics of localised patterns and snaking bifurcation diagrams [J].
Chapman, S. J. ;
Kozyreff, G. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) :319-354
[7]   AMPLITUDE EQUATIONS FOR SYSTEMS WITH COMPETING INSTABILITIES [J].
COULLET, PH ;
SPIEGEL, EA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (04) :776-821
[8]   Beyond all order asymptotics for homoclinic snaking in a Schnakenberg system [J].
de Witt, Hannes .
NONLINEARITY, 2019, 32 (07) :2667-2693
[9]   Exponential asymptotics of homoclinic snaking [J].
Dean, A. D. ;
Matthews, P. C. ;
Cox, S. M. ;
King, J. R. .
NONLINEARITY, 2011, 24 (12) :3323-3351
[10]   A SIMPLE GLOBAL CHARACTERIZATION FOR NORMAL FORMS OF SINGULAR VECTOR-FIELDS [J].
ELPHICK, C ;
TIRAPEGUI, E ;
BRACHET, ME ;
COULLET, P ;
IOOSS, G .
PHYSICA D, 1987, 29 (1-2) :95-127