On computing sparse generalized inverses

被引:0
作者
Ponte, Gabriel [1 ,2 ]
Fampa, Marcia [2 ]
Lee, Jon [1 ]
Xu, Luze [3 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[3] Univ Calif Davis, Davis, CA USA
基金
美国国家科学基金会;
关键词
Moore-Penrose pseudoinverse; Generalized inverse; Sparse optimization; Norm minimization; Least squares; Linear program;
D O I
10.1016/j.orl.2023.107058
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The M-P (Moore-Penrose) pseudoinverse is used in several linear-algebra applications. It is convenient to construct sparse block-structured matrices satisfying some relevant properties of the M-P pseudoinverse for specific applications. Aiming at row-sparse generalized inverses, we consider 2,1-norm minimization (and generalizations). We show that a 2,1-norm minimizing generalized inverse satisfies two additional M-P properties, including one needed for computing least-squares solutions. We present formulations related to finding row-sparse generalized inverses that can be solved very efficiently, which we verify numerically.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 16 条
  • [1] Ben-Israel A., 1974, Generalized Inverses: Theory and Applications
  • [2] Campbell SL, 2009, CLASS APPL MATH, V56, P1, DOI 10.1137/1.9780898719048
  • [3] Dokmanic I, 2017, Arxiv, DOI arXiv:1706.08349
  • [4] Dokmanic I, 2013, INT CONF ACOUST SPEE, P6526, DOI 10.1109/ICASSP.2013.6638923
  • [5] Dokmanic Ivan, 2017, Beyond Moore-Penrose Part II: the sparse pseudoinverse
  • [6] Experimental analysis of local searches for sparse reflexive generalized inverses
    Fampa, Marcia
    Lee, Jon
    Ponte, Gabriel
    Xu, Luze
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 81 (04) : 1057 - 1093
  • [7] On sparse reflexive generalized inverse
    Fampa, Marcia
    Lee, Jon
    [J]. OPERATIONS RESEARCH LETTERS, 2018, 46 (06) : 605 - 610
  • [8] Fampa Marcia, 2021, Open J. Math. Optim., V2, P1
  • [9] Fuentes V., 2016, CLAIO 2016, P343
  • [10] Golub G.H., 2013, Matrix computations, VFourth