A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer

被引:29
作者
Amgad, Mohamed [1 ]
Hodge, James M. [2 ]
Elsebaie, Maha A. T. [3 ]
Bodelon, Clara [2 ]
Puvanesarajah, Samantha [2 ]
Gutman, David A. [4 ]
Siziopikou, Kalliopi P. [1 ]
Goldstein, Jeffery A. [1 ]
Gaudet, Mia M. [5 ]
Teras, Lauren R. [2 ]
Cooper, Lee A. D. [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Pathol, Chicago, IL 60611 USA
[2] Amer Canc Soc, Dept Populat Sci, Atlanta, GA USA
[3] John H Stroger Jr Hosp Cook Cty, Dept Med, Chicago, IL USA
[4] Emory Univ, Sch Med, Dept Pathol, Atlanta, GA USA
[5] NCI, Div Canc Epidemiol & Genet, Bethesda, MD USA
基金
美国国家卫生研究院;
关键词
FIBROBLAST HETEROGENEITY; ENRICHMENT ANALYSIS; TUMOR; SURVIVAL; MODELS; CHEMOTHERAPY; METASTASIS; RECURRENCE; PREVENTION; PREDICTOR;
D O I
10.1038/s41591-023-02643-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which are qualitative and do not account for noncancerous elements within the tumor microenvironment. Here we present the Histomic Prognostic Signature (HiPS), a comprehensive, interpretable scoring of the survival risk incurred by breast tumor microenvironment morphology. HiPS uses deep learning to accurately map cellular and tissue structures to measure epithelial, stromal, immune, and spatial interaction features. It was developed using a population-level cohort from the Cancer Prevention Study-II and validated using data from three independent cohorts, including the Prostate, Lung, Colorectal, and Ovarian Cancer trial, Cancer Prevention Study-3, and The Cancer Genome Atlas. HiPS consistently outperformed pathologists in predicting survival outcomes, independent of tumor-node-metastasis stage and pertinent variables. This was largely driven by stromal and immune features. In conclusion, HiPS is a robustly validated biomarker to support pathologists and improve patient prognosis. Deep learning enables comprehensive and interpretable scoring for breast cancer prognosis prediction, outperforming pathologists in multicenter validation and providing insight on prognostic biomarkers.
引用
收藏
页码:85 / 97
页数:22
相关论文
共 126 条
  • [1] Geospatial immune variability illuminates differential evolution of lung adenocarcinoma
    AbdulJabbar, Khalid
    Raza, Shan E. Ahmed
    Rosenthal, Rachel
    Jamal-Hanjani, Mariam
    Veeriah, Selvaraju
    Akarca, Ayse
    Lund, Tom
    Moore, David A.
    Salgado, Roberto
    Al Bakir, Maise
    Zapata, Luis
    Hiley, Crispin T.
    Officer, Leah
    Sereno, Marco
    Smith, Claire Rachel
    Loi, Sherene
    Hackshaw, Allan
    Marafioti, Teresa
    Quezada, Sergio A.
    McGranahan, Nicholas
    Le Quesne, John
    Swanton, Charles
    Yuan, Yinyin
    [J]. NATURE MEDICINE, 2020, 26 (07) : 1054 - +
  • [2] Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association
    Abels, Esther
    Pantanowitz, Liron
    Aeffner, Famke
    Zarella, Mark D.
    van der Laak, Jeroen
    Bui, Marilyn M.
    Vemuri, Venkata N. P.
    Parwani, Anil V.
    Gibbs, Jeff
    Agosto-Arroyo, Emmanuel
    Beck, Andrew H.
    Kozlowski, Cleopatra
    [J]. JOURNAL OF PATHOLOGY, 2019, 249 (03) : 286 - 294
  • [3] Tumor-Associated Stromal Cellular Density as a Predictor of Recurrence and Mortality in Breast Cancer: Results from Ethnically Diverse Study Populations
    Abubakar, Mustapha
    Zhang, Jing
    Ahearn, Thomas U.
    Koka, Hela
    Guo, Changyuan
    Lawrence, Scott M.
    Mutreja, Karun
    Figueroa, Jonine D.
    Ying, Jianming
    Lissowska, Jolanta
    Lyu, Ning
    Garcia-Closas, Montserrat
    Yang, Xiaohong Rose
    [J]. CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2021, 30 (07) : 1397 - 1407
  • [4] SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
    Achanta, Radhakrishna
    Shaji, Appu
    Smith, Kevin
    Lucchi, Aurelien
    Fua, Pascal
    Suesstrunk, Sabine
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2274 - 2281
  • [5] American Joint Committee on Cancer, 2017, AJCC CANC STAGING MA
  • [6] NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer
    Amgad, Mohamed
    Atteya, Lamees A.
    Hussein, Hagar
    Mohammed, Kareem Hosny
    Hafiz, Ehab
    Elsebaie, Maha A. T.
    Alhusseiny, Ahmed M.
    AlMoslemany, Mohamed Atef
    Elmatboly, Abdelmagid M.
    Pappalardo, Philip A.
    Sakr, Rokia Adel
    Mobadersany, Pooya
    Rachid, Ahmad
    Saad, Anas M.
    Alkashash, Ahmad M.
    Ruhban, Inas A.
    Alrefai, Anas
    Elgazar, Nada M.
    Abdulkarim, Ali
    Farag, Abo-Alela
    Etman, Amira
    Elsaeed, Ahmed G.
    Alagha, Yahya
    Amer, Yomna A.
    Raslan, Ahmed M.
    Nadim, Menatalla K.
    Elsebaie, Mai A. T.
    Ayad, Ahmed
    Hanna, Liza E.
    Gadallah, Ahmed
    Elkady, Mohamed
    Drumheller, Bradley
    Jaye, David
    Manthey, David
    Gutman, David A.
    Elfandy, Habiba
    Cooper, Lee A. D.
    [J]. GIGASCIENCE, 2022, 11
  • [7] Explainable nucleus classification using Decision Tree Approximation of Learned Embeddings
    Amgad, Mohamed
    Atteya, LameesA
    Hussein, Hagar
    Mohammed, Kareem Hosny
    Hafiz, Ehab
    Elsebaie, Maha A. T.
    Mobadersany, Pooya
    Manthey, David
    Gutman, David A.
    Elfandy, Habiba
    Cooper, Lee A. D.
    [J]. BIOINFORMATICS, 2022, 38 (02) : 513 - 519
  • [8] Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group
    Amgad, Mohamed
    Stovgaard, Elisabeth Specht
    Balslev, Eva
    Thagaard, Jeppe
    Chen, Weijie
    Dudgeon, Sarah
    Sharma, Ashish
    Kerner, Jennifer K.
    Denkert, Carsten
    Yuan, Yinyin
    AbdulJabbar, Khalid
    Wienert, Stephan
    Savas, Peter
    Voorwerk, Leonie
    Beck, Andrew H.
    Madabhushi, Anant
    Hartman, Johan
    Sebastian, Manu M.
    Horlings, Hugo M.
    Hudecek, Jan
    Ciompi, Francesco
    Moore, David A.
    Singh, Rajendra
    Roblin, Elvire
    Balancin, Marcelo Luiz
    Mathieu, Marie-Christine
    Lennerz, Jochen K.
    Kirtani, Pawan
    Chen, I-Chun
    Braybrooke, Jeremy P.
    Pruneri, Giancarlo
    Demaria, Sandra
    Adams, Sylvia
    Schnitt, Stuart J.
    Lakhani, Sunil R.
    Rojo, Federico
    Comerma, Laura
    Badve, Sunil S.
    Khojasteh, Mehrnoush
    Symmans, W. Fraser
    Sotiriou, Christos
    Gonzalez-Ericsson, Paula
    Pogue-Geile, Katherine L.
    Kim, Rim S.
    Rimm, David L.
    Viale, Giuseppe
    Hewitt, Stephen M.
    Bartlett, John M. S.
    Penault-Llorca, Frederique
    Goel, Shom
    [J]. NPJ BREAST CANCER, 2020, 6 (01)
  • [9] Structured crowdsourcing enables convolutional segmentation of histology images
    Amgad, Mohamed
    Elfandy, Habiba
    Hussein, Hagar
    Atteya, Lamees A.
    Elsebaie, Mai A. T.
    Elnasr, Lamia S. Abo
    Sakr, Rokia A.
    Salem, Hazem S. E.
    Ismail, Ahmed F.
    Saad, Anas M.
    Ahmed, Joumana
    Elsebaie, Maha A. T.
    Rahman, Mustafijur
    Ruhban, Inas A.
    Elgazar, Nada M.
    Alagha, Yahya
    Osman, Mohamed H.
    Alhusseiny, Ahmed M.
    Khalaf, Mariam M.
    Younes, Abo-Alela F.
    Abdulkarim, Ali
    Younes, Duaa M.
    Gadallah, Ahmed M.
    Elkashash, Ahmad M.
    Fala, Salma Y.
    Zaki, Basma M.
    Beezley, Jonathan
    Chittajallu, Deepak R.
    Manthey, David
    Gutman, David A.
    Cooper, Lee A. D.
    [J]. BIOINFORMATICS, 2019, 35 (18) : 3461 - 3467
  • [10] Extending Ripley's K-Function to Quantify Aggregation in 2-D Grayscale Images
    Amgad, Mohamed
    Itoh, Anri
    Tsui, Marco Man Kin
    [J]. PLOS ONE, 2015, 10 (12):