A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer

被引:48
作者
Amgad, Mohamed [1 ]
Hodge, James M. [2 ]
Elsebaie, Maha A. T. [3 ]
Bodelon, Clara [2 ]
Puvanesarajah, Samantha [2 ]
Gutman, David A. [4 ]
Siziopikou, Kalliopi P. [1 ]
Goldstein, Jeffery A. [1 ]
Gaudet, Mia M. [5 ]
Teras, Lauren R. [2 ]
Cooper, Lee A. D. [1 ]
机构
[1] Northwestern Univ, Dept Pathol, Feinberg Sch Med, Chicago, IL 60611 USA
[2] Amer Canc Soc, Dept Populat Sci, Atlanta, GA 30329 USA
[3] John H Stroger Jr Hosp Cook Cty, Dept Med, Chicago, IL USA
[4] Emory Univ, Sch Med, Dept Pathol, Atlanta, GA 30322 USA
[5] NCI, Div Canc Epidemiol & Genet, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION SIGNATURE; ENRICHMENT ANALYSIS; TUMOR; SURVIVAL; MODELS; CHEMOTHERAPY; PROGRESSION; METASTASIS; RECURRENCE; PREVENTION;
D O I
10.1038/s41591-023-02643-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which are qualitative and do not account for noncancerous elements within the tumor microenvironment. Here we present the Histomic Prognostic Signature (HiPS), a comprehensive, interpretable scoring of the survival risk incurred by breast tumor microenvironment morphology. HiPS uses deep learning to accurately map cellular and tissue structures to measure epithelial, stromal, immune, and spatial interaction features. It was developed using a population-level cohort from the Cancer Prevention Study-II and validated using data from three independent cohorts, including the Prostate, Lung, Colorectal, and Ovarian Cancer trial, Cancer Prevention Study-3, and The Cancer Genome Atlas. HiPS consistently outperformed pathologists in predicting survival outcomes, independent of tumor-node-metastasis stage and pertinent variables. This was largely driven by stromal and immune features. In conclusion, HiPS is a robustly validated biomarker to support pathologists and improve patient prognosis.
引用
收藏
页码:85 / +
页数:19
相关论文
共 126 条
[1]   Geospatial immune variability illuminates differential evolution of lung adenocarcinoma [J].
AbdulJabbar, Khalid ;
Raza, Shan E. Ahmed ;
Rosenthal, Rachel ;
Jamal-Hanjani, Mariam ;
Veeriah, Selvaraju ;
Akarca, Ayse ;
Lund, Tom ;
Moore, David A. ;
Salgado, Roberto ;
Al Bakir, Maise ;
Zapata, Luis ;
Hiley, Crispin T. ;
Officer, Leah ;
Sereno, Marco ;
Smith, Claire Rachel ;
Loi, Sherene ;
Hackshaw, Allan ;
Marafioti, Teresa ;
Quezada, Sergio A. ;
McGranahan, Nicholas ;
Le Quesne, John ;
Swanton, Charles ;
Yuan, Yinyin .
NATURE MEDICINE, 2020, 26 (07) :1054-+
[2]   Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association [J].
Abels, Esther ;
Pantanowitz, Liron ;
Aeffner, Famke ;
Zarella, Mark D. ;
van der Laak, Jeroen ;
Bui, Marilyn M. ;
Vemuri, Venkata N. P. ;
Parwani, Anil V. ;
Gibbs, Jeff ;
Agosto-Arroyo, Emmanuel ;
Beck, Andrew H. ;
Kozlowski, Cleopatra .
JOURNAL OF PATHOLOGY, 2019, 249 (03) :286-294
[3]   Tumor-Associated Stromal Cellular Density as a Predictor of Recurrence and Mortality in Breast Cancer: Results from Ethnically Diverse Study Populations [J].
Abubakar, Mustapha ;
Zhang, Jing ;
Ahearn, Thomas U. ;
Koka, Hela ;
Guo, Changyuan ;
Lawrence, Scott M. ;
Mutreja, Karun ;
Figueroa, Jonine D. ;
Ying, Jianming ;
Lissowska, Jolanta ;
Lyu, Ning ;
Garcia-Closas, Montserrat ;
Yang, Xiaohong Rose .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2021, 30 (07) :1397-1407
[4]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[5]  
American Joint Committee on Cancer, 2017, American joint committee on cancer staging manual, V8th
[6]   NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer [J].
Amgad, Mohamed ;
Atteya, Lamees A. ;
Hussein, Hagar ;
Mohammed, Kareem Hosny ;
Hafiz, Ehab ;
Elsebaie, Maha A. T. ;
Alhusseiny, Ahmed M. ;
AlMoslemany, Mohamed Atef ;
Elmatboly, Abdelmagid M. ;
Pappalardo, Philip A. ;
Sakr, Rokia Adel ;
Mobadersany, Pooya ;
Rachid, Ahmad ;
Saad, Anas M. ;
Alkashash, Ahmad M. ;
Ruhban, Inas A. ;
Alrefai, Anas ;
Elgazar, Nada M. ;
Abdulkarim, Ali ;
Farag, Abo-Alela ;
Etman, Amira ;
Elsaeed, Ahmed G. ;
Alagha, Yahya ;
Amer, Yomna A. ;
Raslan, Ahmed M. ;
Nadim, Menatalla K. ;
Elsebaie, Mai A. T. ;
Ayad, Ahmed ;
Hanna, Liza E. ;
Gadallah, Ahmed ;
Elkady, Mohamed ;
Drumheller, Bradley ;
Jaye, David ;
Manthey, David ;
Gutman, David A. ;
Elfandy, Habiba ;
Cooper, Lee A. D. .
GIGASCIENCE, 2022, 11
[7]   Explainable nucleus classification using Decision Tree Approximation of Learned Embeddings [J].
Amgad, Mohamed ;
Atteya, LameesA ;
Hussein, Hagar ;
Mohammed, Kareem Hosny ;
Hafiz, Ehab ;
Elsebaie, Maha A. T. ;
Mobadersany, Pooya ;
Manthey, David ;
Gutman, David A. ;
Elfandy, Habiba ;
Cooper, Lee A. D. .
BIOINFORMATICS, 2022, 38 (02) :513-519
[8]   Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group [J].
Amgad, Mohamed ;
Stovgaard, Elisabeth Specht ;
Balslev, Eva ;
Thagaard, Jeppe ;
Chen, Weijie ;
Dudgeon, Sarah ;
Sharma, Ashish ;
Kerner, Jennifer K. ;
Denkert, Carsten ;
Yuan, Yinyin ;
AbdulJabbar, Khalid ;
Wienert, Stephan ;
Savas, Peter ;
Voorwerk, Leonie ;
Beck, Andrew H. ;
Madabhushi, Anant ;
Hartman, Johan ;
Sebastian, Manu M. ;
Horlings, Hugo M. ;
Hudecek, Jan ;
Ciompi, Francesco ;
Moore, David A. ;
Singh, Rajendra ;
Roblin, Elvire ;
Balancin, Marcelo Luiz ;
Mathieu, Marie-Christine ;
Lennerz, Jochen K. ;
Kirtani, Pawan ;
Chen, I-Chun ;
Braybrooke, Jeremy P. ;
Pruneri, Giancarlo ;
Demaria, Sandra ;
Adams, Sylvia ;
Schnitt, Stuart J. ;
Lakhani, Sunil R. ;
Rojo, Federico ;
Comerma, Laura ;
Badve, Sunil S. ;
Khojasteh, Mehrnoush ;
Symmans, W. Fraser ;
Sotiriou, Christos ;
Gonzalez-Ericsson, Paula ;
Pogue-Geile, Katherine L. ;
Kim, Rim S. ;
Rimm, David L. ;
Viale, Giuseppe ;
Hewitt, Stephen M. ;
Bartlett, John M. S. ;
Penault-Llorca, Frederique ;
Goel, Shom .
NPJ BREAST CANCER, 2020, 6 (01)
[9]   Structured crowdsourcing enables convolutional segmentation of histology images [J].
Amgad, Mohamed ;
Elfandy, Habiba ;
Hussein, Hagar ;
Atteya, Lamees A. ;
Elsebaie, Mai A. T. ;
Elnasr, Lamia S. Abo ;
Sakr, Rokia A. ;
Salem, Hazem S. E. ;
Ismail, Ahmed F. ;
Saad, Anas M. ;
Ahmed, Joumana ;
Elsebaie, Maha A. T. ;
Rahman, Mustafijur ;
Ruhban, Inas A. ;
Elgazar, Nada M. ;
Alagha, Yahya ;
Osman, Mohamed H. ;
Alhusseiny, Ahmed M. ;
Khalaf, Mariam M. ;
Younes, Abo-Alela F. ;
Abdulkarim, Ali ;
Younes, Duaa M. ;
Gadallah, Ahmed M. ;
Elkashash, Ahmad M. ;
Fala, Salma Y. ;
Zaki, Basma M. ;
Beezley, Jonathan ;
Chittajallu, Deepak R. ;
Manthey, David ;
Gutman, David A. ;
Cooper, Lee A. D. .
BIOINFORMATICS, 2019, 35 (18) :3461-3467
[10]   Extending Ripley's K-Function to Quantify Aggregation in 2-D Grayscale Images [J].
Amgad, Mohamed ;
Itoh, Anri ;
Tsui, Marco Man Kin .
PLOS ONE, 2015, 10 (12)