Novel low-cost steel slag porous ceramic-based composite phase change material: An innovative strategy for comprehensive utilization of steel slag resources

被引:28
作者
Liu, Ke [1 ]
Yuan, Zhangfu [1 ]
Zhao, Hongxin [1 ,2 ]
Xu, Bingsheng [3 ]
Lu, Yi [1 ]
Zhang, Han [1 ]
Ma, Bowen [1 ]
机构
[1] Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, Natl Engn Res Ctr Green Recycling Strateg Met Res, Beijing 100190, Peoples R China
[3] China Natl Inst Standardizat, Res Branch Resource & Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Steel slag; Composite phase change materials; Thermal energy storage; Porous ceramics; Waste heat utilization; THERMAL-ENERGY STORAGE; HEAT-CAPACITY; CONDUCTIVITY; PERFORMANCE; BEHAVIOR; FOAMS; ENHANCEMENT; PARAFFIN; WASTE; CLAY;
D O I
10.1016/j.ceramint.2023.08.225
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work creatively proposes a novel and low-cost steel slag porous ceramic (SSPC)-based NaNO3 salt composite phase change material (PCM) using industrial solid waste steel slag as the main raw material. In this study, the foaming-gel casting process prepares SSPC with high porosity (77-83%) and mechanical strength (0.36-1.13 MPa), which shows good adsorption of NaNO3 salts. The spontaneous infiltration method prepares and characterizes the NaNO3/SSPC composite PCM by performance properties. The results show that the NaNO3 salt is uniformly adsorbed in the pores of SSPC with good chemical compatibility, and the maximum filling rate reaches 86.26%. The porous media can effectively prevent the leakage of molten NaNO3 salt. The prepared composite PCMs have lower melting and freezing temperatures, lower subcooling by 5.47 degrees C, and higher thermal conductivity by 121.6% compared to pure NaNO3 salt. The latent heat retention of the composite after 50 thermal cycles is more than 96%, with good thermal reliability. Finally, a prospective process of using steel slag to prepare composite PCMs for collecting and storing waste heat from the steel industry is proposed. Reusing steel slag and storing waste heat from the steel industry are realized, both beneficial for sustainable development.
引用
收藏
页码:35466 / 35475
页数:10
相关论文
共 52 条
[1]   Phase change materials and carbon nanostructures for thermal energy storage: A literature review [J].
Amaral, C. ;
Vicente, R. ;
Marques, P. A. A. P. ;
Barros-Timmons, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 79 :1212-1228
[2]   Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures [J].
Anagnostopoulos, A. ;
Alexiadis, A. ;
Ding, Y. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 200
[3]  
Bi Chuan Chi, 2020, Key Engineering Materials, V834, P132, DOI [10.4028/www.scientific.net/kem.834.132, 10.4028/www.scientific.net/KEM.834.132]
[4]  
Calvet N., 2013, P ASME
[5]   Polyethylene glycol-enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: Form stabilization, thermal energy storage behavior and thermal conductivity enhancement [J].
Deng, Yong ;
Li, Jinhong ;
Nian, Hongen .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 174 :283-291
[6]   Preparation and Characterization of KNO3/Diatomite Shape-Stabilized Composite Phase Change Material for High Temperature Thermal Energy Storage [J].
Deng, Yong ;
Li, Jinhong ;
Qian, Tingting ;
Guan, Weimin ;
Wang, Xiang .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2017, 33 (02) :198-203
[7]  
Gil A., 2014, EUROTHERM SEMINAR, V99
[8]   Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material [J].
Guo, Qiang ;
Wang, Tao .
THERMOCHIMICA ACTA, 2015, 613 :66-70
[9]   Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review [J].
Hasanbeigi, Ali ;
Arens, Marlene ;
Price, Lynn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 :645-658
[10]   A review of energy use and energy-efficient technologies for the iron and steel industry [J].
He, Kun ;
Wang, Li .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 70 :1022-1039