Simulation of the Three-Component Potts Model on a Hexagonal Lattice by the Monte Carlo Method

被引:2
作者
Babaev, A. B. [1 ,2 ]
Murtazaev, A. K. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Phys, Dagestan Fed Res Ctr, Makhachkala 367010, Russia
[2] Russian Acad Sci, Dagestan Fed Res Ctr, Makhachkala 367032, Russia
关键词
Potts model; critical exponents; Monte Carlo method; thermodynamic parameters; phase transitions;
D O I
10.1134/S0031918X23600896
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Computer simulation of the three-component Potts model on a hexagonal lattice was carried out using the Monte Carlo method. Systems with linear dimensions L x L = N, L = 20-320 in units of interatomic distances are considered. Based on the theory of finite-size scaling, the static critical exponents of heat capacity alpha, susceptibility gamma, magnetization beta, and correlation radius nu are calculated. The data we obtained confirm that in the considered Potts model on a hexagonal lattice, a second-order phase transition is observed with critical exponents corresponding to the universality class of the three-component Potts model.
引用
收藏
页码:653 / 659
页数:7
相关论文
共 29 条
[1]  
Babaev A. B., 2019, Mathematical Models and Computer Simulations, V11, P575, DOI [10.1134/s2070048219040021, 10.1134/S2070048219040021]
[2]   Tricritical Point for the Three-Dimensional Disordered Potts Model (q=3) on a Simple Cubic Lattice [J].
Babaev, A. B. ;
Murtazaev, A. K. .
JETP LETTERS, 2017, 105 (06) :384-387
[3]   Computer simulation of critical behavior in spin models with nonmagnetic impurities [J].
Babaev, A. B. ;
Murtazaev, A. K. .
LOW TEMPERATURE PHYSICS, 2015, 41 (08) :608-613
[4]  
Babaev A, 2022, SSRN Electronic Journal, DOI [10.2139/ssrn.4066280, 10.2139/ssrn.4066280, DOI 10.2139/SSRN.4066280]
[5]   New Monte Carlo algorithms for classical spin systems [J].
Barkema, GT ;
Newman, MEJ .
MONTE CARLO METHODS IN CHEMICAL PHYSICS, 1999, 105 :483-517
[6]  
Baxter RodneyJ., 1985, INTEGRABLE SYSTEMS S, V1, P5, DOI [DOI 10.1142/97898144152550002, 10.1142/9789814415255_0002]
[7]   Monte Carlo investigation of the three-dimensional random-field three-state Potts model [J].
Eichhorn, K ;
Binder, K .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (28) :5209-5227
[8]  
Fisher M.E., 1965, NATURE CRITICAL POIN
[9]   SCALING THEORY FOR FINITE-SIZE EFFECTS IN CRITICAL REGION [J].
FISHER, ME ;
BARBER, MN .
PHYSICAL REVIEW LETTERS, 1972, 28 (23) :1516-&
[10]   ORDER-DISORDER IN HEXAGONAL LATTICES [J].
HOUTAPPEL, RMF .
PHYSICA, 1950, 16 (05) :425-455