Configuration feature extraction and mechanical properties prediction of particle reinforced metal matrix composites

被引:11
作者
Lin, Zichang [1 ]
Su, Yishi [1 ]
Yang, Jingyu [1 ]
Qiu, Caihao [1 ,2 ]
Chai, Xushun [1 ]
Liu, Xuyang [1 ]
Ouyang, Qiubao [1 ]
Zhang, Di [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal matrix composites; Topological data analysis; Machine learning; Strength -toughness matching; MICROSTRUCTURE;
D O I
10.1016/j.coco.2023.101688
中图分类号
TB33 [复合材料];
学科分类号
摘要
Improving the strength-toughness matching properties has become a key issue in metal matrix composites, which can be achieved by some specific designs of composite configurations (i.e. spatial distribution of reinforced particles). To better interpret the composite configuration effect on mechanical properties, it is necessary to develop comprehensive feature descriptors for composite configurations. In this work, topological data analysis and particle clustering parameter are applied to extract feature descriptors for composite configurations of SiCp/ Al composites, which are effective to distinguish different types of composite configurations. In addition, based on the dataset constructed by finite element analysis, machine learning algorithms are applied to predict the composite configurations-mechanical properties of SiCp/Al composites. Then, particle swarm optimization is used to search the composite configurations with extreme mechanical properties predicted by machine learning model. The results of this work indicate that the composite configurations with larger particle clustering parameter and persistent entropy will yield better strength-toughness matching.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J].
Agrawal, Ankit ;
Choudhary, Alok .
APL MATERIALS, 2016, 4 (05)
[2]   Topological feature engineering for machine learning based halide perovskite materials design [J].
Anand, D. Vijay ;
Xu, Qiang ;
Wee, JunJie ;
Xia, Kelin ;
Sum, Tze Chien .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[3]   On the stability of persistent entropy and new summary functions for topological data analysis [J].
Atienza, Nieves ;
Gonzalez-Diaz, Rocio ;
Soriano-Trigueros, Manuel .
PATTERN RECOGNITION, 2020, 107
[4]   TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions [J].
Cang, Zixuan ;
Wei, Guowei .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)
[5]   TOPOLOGY AND DATA [J].
Carlsson, Gunnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) :255-308
[6]   Topology-Based Machine Learning Strategy for Cluster Structure Prediction [J].
Chen, Xin ;
Chen, Dong ;
Weng, Mouyi ;
Jiang, Yi ;
Wei, Guo-Wei ;
Pan, Feng .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (11) :4392-4401
[7]   An entropy-based persistence barcode [J].
Chintakunta, Harish ;
Gentimis, Thanos ;
Gonzalez-Diaz, Rocio ;
Jimenez, Maria-Jose ;
Krim, Hamid .
PATTERN RECOGNITION, 2015, 48 (02) :391-401
[8]   Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite [J].
Deng, Kunkun ;
Shi, Juyan ;
Wang, Cuiju ;
Wang, Xiaojun ;
Wu, Yewei ;
Nie, Kaibo ;
Wu, Kun .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2012, 43 (08) :1280-1284
[9]   Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites [J].
Fan Genlian ;
Guo Zhiqi ;
Tan Zhanqiu ;
Li Zhiqiang .
ACTA METALLURGICA SINICA, 2022, 58 (11) :1416-1426
[10]   Fracture behaviour of SiCp/Al composites with network architecture [J].
Gao, Xiang ;
Zhang, Xuexi ;
Qian, Mingfang ;
Li, Aibin ;
Geng, Lin ;
Peng, Hua-Xin .
MATERIALIA, 2020, 12