An intensity-enhanced LiDAR SLAM for unstructured environments

被引:14
作者
Dai, Zhiqiang [1 ,3 ]
Zhou, Jingyi [1 ,3 ]
Li, Tianci [2 ,3 ]
Yao, Hexiong [1 ,3 ]
Sun, Shihai [1 ,3 ]
Zhu, Xiangwei [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Commun Engn, Guangzhou 510006, Peoples R China
[2] Sun Yat Sen Univ, Sch Syst Sci & Engn, Guangzhou 510006, Peoples R China
[3] Shenzhen Key Lab Nav & Commun Integrat, Shenzhen 518000, Peoples R China
关键词
LiDAR; simultaneous localization and mapping (SLAM); intensity; unstructured scenarios; SIMULTANEOUS LOCALIZATION;
D O I
10.1088/1361-6501/acf38d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Into Darkness: Visual Navigation Based on a Lidar-Intensity-Image Pipeline [J].
Barfoot, Timothy D. ;
McManus, Colin ;
Anderson, Sean ;
Dong, Hang ;
Beerepoot, Erik ;
Tong, Chi Hay ;
Furgale, Paul ;
Gammell, Jonathan D. ;
Enright, John .
ROBOTICS RESEARCH, ISRR, 2016, 114 :487-504
[2]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256
[3]   The normal distributions transform: A new approach to laser scan matching [J].
Biber, P .
IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, :2743-2748
[4]   Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age [J].
Cadena, Cesar ;
Carlone, Luca ;
Carrillo, Henry ;
Latif, Yasir ;
Scaramuzza, Davide ;
Neira, Jose ;
Reid, Ian ;
Leonard, John J. .
IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) :1309-1332
[5]  
Carballo A., 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), P5849, DOI 10.1109/IROS.2010.5649769
[6]   NDT-LOAM: A Real-Time Lidar Odometry and Mapping With Weighted NDT and LFA [J].
Chen, Shoubin ;
Ma, Hao ;
Jiang, Changhui ;
Zhou, Baoding ;
Xue, Weixing ;
Xiao, Zhenzhong ;
Li, Qingquan .
IEEE SENSORS JOURNAL, 2022, 22 (04) :3660-3671
[7]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[8]  
Ji XL, 2019, 2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), P2481, DOI [10.1109/icma.2019.8816388, 10.1109/ICMA.2019.8816388]
[9]   Modeling Laser Intensities For Simultaneous Localization and Mapping [J].
Khan, Sheraz ;
Wollherr, Dirk ;
Buss, Martin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02) :692-699
[10]  
Kim G, 2018, IEEE INT C INT ROBOT, P4802, DOI 10.1109/IROS.2018.8593953