Tracing projective modules over noncommutative orbifolds

被引:0
作者
Chakraborty, Sayan [1 ]
机构
[1] Indian Stat Inst, Stat Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, India
关键词
Metaplectic transformations; Morita equivalence; noncommutative torus; C *-crossed product; group actions; classification of C*-algebras; C-ASTERISK-ALGEBRAS; IRRATIONAL ROTATION ALGEBRAS; MORITA EQUIVALENCE; CROSSED-PRODUCTS; CHERN CHARACTERS; FINITE-GROUPS; CLASSIFICATION; SUBGROUPS;
D O I
10.4171/JNCG/487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an action of a finite cyclic group F on an n-dimensional noncommutative torus A(theta), we give sufficient conditions when the fundamental projective modules over A(theta), which determine the range of the canonical trace on A(theta), extend to projective modules over the crossed product C* -algebra A(theta) (sic) F. Our results allow us to understand the range of the canonical trace on A(theta) (sic) F, and determine it completely for several examples including the crossed products of 2-dimensional noncommutative tori with finite cyclic groups and the flip action of Z(2) on any n-dimensional non -commutative torus. As an application, for the flip action of Z(2) on a simple n-dimensional torus A(theta), we determine the Morita equivalence class of A(theta) (sic) Z(2), in terms of the Morita equivalence class of A(theta).
引用
收藏
页码:385 / 406
页数:22
相关论文
共 26 条
[1]   Gap-labelling conjecture with nonzero magnetic field [J].
Benameur, Moulay Tahar ;
Mathai, Varghese .
ADVANCES IN MATHEMATICS, 2018, 325 :116-164
[2]   Isomorphism and Morita equivalence classes for crossed products of irrational rotation algebras by cyclic subgroups of SL2(Z) [J].
Boenicke, Christian ;
Chakraborty, Sayan ;
He, Zhuofeng ;
Liao, Hung-Chang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (11) :3208-3243
[3]   CROSSED PRODUCTS OF UHF ALGEBRAS BY PRODUCT TYPE ACTIONS [J].
BRATTELI, O .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (01) :1-23
[4]  
Buck J, 2007, J OPERAT THEOR, V57, P35
[5]  
Chakraborty S., MORITA EQUIVALENCE N
[6]   SOME REMARKS ON K0 OF NONCOMMUTATIVE TORI [J].
Chakraborty, Sayan .
MATHEMATICA SCANDINAVICA, 2020, 126 (02) :387-400
[7]   METAPLECTIC TRANSFORMATIONS AND FINITE GROUP ACTIONS ON NONCOMMUTATIVE TORT [J].
Chakraborty, Sayan ;
Luef, Franz .
JOURNAL OF OPERATOR THEORY, 2019, 82 (01) :147-172
[8]  
Phillips NC, 2006, Arxiv, DOI arXiv:math/0609783
[9]  
de Gosson MA, 2011, PSEUDO DIFFER OPER, V7, pXIII, DOI 10.1007/978-3-7643-9992-4
[10]   The structure of crossed products of irrational rotation algebras by finite subgroups of SL2(Z) [J].
Echterhoff, Siegfried ;
Lueck, Wolfgang ;
Phillips, N. Christopher ;
Walters, Samuel .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 639 :173-221