Arithmetic inflection formulae for linear series on hyperelliptic curves

被引:2
作者
Cotterill, Ethan [1 ,4 ]
Darago, Ignacio [2 ]
Han, Changho [3 ]
机构
[1] Inst Matemat, UFF, Rua Prof Waldemar Freitas, S-N, Niteroi, RJ, Brazil
[2] Univ Chicago, Dept Math, S Univ Ave, Chicago, IL USA
[3] Univ Georgia, Dept Math, Athens, GA USA
[4] Univ Fed Fluminense, Inst Matemat, Rua Prof Waldemar Freitas, S-N, 24, BR-210201 Niteroi, RJ, Brazil
关键词
inflection; linear series; hyperelliptic curves; A(1)-homotopy theory; RATIONAL-POINTS; GEOMETRY;
D O I
10.1002/mana.202100229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Over the complex numbers, Plucker's formula computes the number of inflection points of a linear series of fixed degree and projective dimension on an algebraic curve of fixed genus. Here, we explore the geometric meaning of a natural analog of Plucker's formula and its constituent local indices in A(1)-homotopy theory for certain linear series on hyperelliptic curves defined over an arbitrary field.
引用
收藏
页码:3272 / 3300
页数:29
相关论文
共 50 条
[31]   Computation of the unipotent Albanese map on elliptic and hyperelliptic curves [J].
Beacom, Jamie .
ANNALES MATHEMATIQUES DU QUEBEC, 2020, 44 (02) :201-259
[32]   Rational points in geometric progressions on certain hyperelliptic curves [J].
Bremner, Andrew ;
Ulas, Maciej .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :669-683
[33]   EXPLICIT VOLOGODSKY INTEGRATION FOR HYPERELLIPTIC CURVES [J].
Kaya, Enis .
MATHEMATICS OF COMPUTATION, 2022, 91 (337) :2367-2396
[34]   Extending the GHS Attack of Hyperelliptic Curves [J].
Gu Haihua ;
Gu Dawu .
CHINESE JOURNAL OF ELECTRONICS, 2009, 18 (04) :741-743
[35]   Picard group of moduli of hyperelliptic curves [J].
Sergey Gorchinskiy ;
Filippo Viviani .
Mathematische Zeitschrift, 2008, 258 :319-331
[36]   Picard group of moduli of hyperelliptic curves [J].
Gorchinskiy, Sergey ;
Viviani, Filippo .
MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (02) :319-331
[37]   Hyperelliptic Gorenstein curves and logarithmic differentials [J].
Battistella, Luca ;
Bozlee, Sebastian .
FORUM OF MATHEMATICS SIGMA, 2024, 12
[38]   Nonlinearity of Boolean functions and hyperelliptic curves [J].
Cheon, JH ;
Chee, S .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (03) :354-365
[39]   EQUATIONS OF HYPERELLIPTIC MODULAR-CURVES [J].
ROVIRA, JG .
ANNALES DE L INSTITUT FOURIER, 1991, 41 (04) :779-795
[40]   A note on certain maximal hyperelliptic curves [J].
Tafazolian, Saeed .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (05) :1013-1016