Arithmetic inflection formulae for linear series on hyperelliptic curves

被引:2
作者
Cotterill, Ethan [1 ,4 ]
Darago, Ignacio [2 ]
Han, Changho [3 ]
机构
[1] Inst Matemat, UFF, Rua Prof Waldemar Freitas, S-N, Niteroi, RJ, Brazil
[2] Univ Chicago, Dept Math, S Univ Ave, Chicago, IL USA
[3] Univ Georgia, Dept Math, Athens, GA USA
[4] Univ Fed Fluminense, Inst Matemat, Rua Prof Waldemar Freitas, S-N, 24, BR-210201 Niteroi, RJ, Brazil
关键词
inflection; linear series; hyperelliptic curves; A(1)-homotopy theory; RATIONAL-POINTS; GEOMETRY;
D O I
10.1002/mana.202100229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Over the complex numbers, Plucker's formula computes the number of inflection points of a linear series of fixed degree and projective dimension on an algebraic curve of fixed genus. Here, we explore the geometric meaning of a natural analog of Plucker's formula and its constituent local indices in A(1)-homotopy theory for certain linear series on hyperelliptic curves defined over an arbitrary field.
引用
收藏
页码:3272 / 3300
页数:29
相关论文
共 50 条
  • [21] Regular models of hyperelliptic curves
    Muselli, Simone
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (04): : 646 - 697
  • [22] Hyperelliptic curves and newform coefficients
    Dembner, Spencer
    Jain, Vanshika
    JOURNAL OF NUMBER THEORY, 2021, 225 : 214 - 239
  • [23] Hyperelliptic curves with compact parameters
    Brown, E
    Myers, BT
    Solinas, JA
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 36 (03) : 245 - 261
  • [24] Omega Pairing on Hyperelliptic Curves
    Chen, Shan
    Wang, Kunpeng
    Lin, Dongdai
    Wang, Tao
    INFORMATION SECURITY AND CRYPTOLOGY, INSCRYPT 2013, 2014, 8567 : 167 - 184
  • [25] A note on families of hyperelliptic curves
    Gorchinskiy, Sergey
    Viviani, Filippo
    ARCHIV DER MATHEMATIK, 2009, 92 (02) : 119 - 128
  • [26] Hyperelliptic Curves with Compact Parameters
    Ezra Brown
    Bruce T. Myers
    Jerome A. Solinas
    Designs, Codes and Cryptography, 2005, 36 : 245 - 261
  • [27] On the sections of universal hyperelliptic curves
    Watanabe, Tatsunari
    JOURNAL OF ALGEBRA, 2019, 533 : 44 - 89
  • [28] Non complete linear series on curves
    Luca Chiantini
    Ricerche di Matematica, 2006, 55 (1) : 93 - 104
  • [29] Modular equations for hyperelliptic curves
    Gaudry, P
    Schost, É
    MATHEMATICS OF COMPUTATION, 2005, 74 (249) : 429 - 454
  • [30] Computation of the unipotent Albanese map on elliptic and hyperelliptic curves
    Beacom, Jamie
    ANNALES MATHEMATIQUES DU QUEBEC, 2020, 44 (02): : 201 - 259